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COMPUTER PROGRAM FOR FINITE -DIFFERENCE SOLUTIONS 

OF SHELLS O F  REVOLUTION UNDER ASYMMETRIC 

DYNAMIC LOADING 

By Wendell B. Stephens and Martha P. Robinson 
Langley Research Center 

SUMMARY 

A general computer program written in FORTRAN IV language which determines 
the linear asymmetric bending behavior of a statically o r  dynamically loaded elastic thin 
shell of revolution is presented. 
thermally. The variables are separated by representing the loads, displacements, and 
s t resses  by Fourier series expansions in the circumferential direction. The resulting 
set  of equations is solved numerically by using finite-difference approximations in the 
meridonal  direction and backward differences in the time direction. A three-layered 
c ross  section which is symmetric about the middle surface is allowed. The boundary 
conditions are taken in a general form which allows the program to handle elastic 
restraints specifying a linear combination of edge forces and displacements. 
geneous initial conditions are also allowed. 
detail and sample calculations are included. 

The loading may be applied either mechanically o r  

Nonhomo- 
The data input procedure is described in 

INTRODUCTION 

The linear elastic behavior of any shell of revolution with a static asymmetric load 
has been programed in reference 1 by using Fourier se r ies  expansions along the circum- 
ference along the meridian of the shell. 
ence 1 is based on the analytic formulation presented in reference 2. The shell theory 
used is that of reference 3. The program in reference 1 calculates the Fourier coeffi- 
cients of the series but does not perform the summations of the series. This paper 
extends the analytic formulation and computer program of reference 1 to include asym- 
metric dynamic response of shells of revolution and includes provisions for summation 
of the t e rms  of the series. 
that given in reference 3 for a cylindrical shell and is based on Houbolt's backward dif- 
ference method (refs. 4 and 5).  
thermal and these loads may be either static o r  dynamic. 
vary along the meridian, but the shell c ros s  section must be symmetric about the shell 

The programed analysis contained in re fer -  

Numerical integration of the dynamic equations is similar to 

The loading on the shell may be either mechanical o r  
The thickness of the shell may 



middle surface. 
tions. 
preparation of input data and subprograms. The program is written in the Control Data 
version (ref. 6 )  of FORTRAN IV language for operation in the scope 3.0 digital computer. 
The program requires an octal storage of 70000 memory words. The output of the pro- 
gram l is ts  the shell description and the nondimensional Fourier se r ies  summations of 
the displacements, rotations, moments, and force resultants in a tabular (columnwise) 
format. 

In addition, the initial conditions include provisions for initial deforma- 
This paper is a user 's  document which contains the necessary instructions for 

The program presented in this paper is illustrated by two dynamic-response 
example problems. In the f i rs t  problem a comparison is made with exact results for 
axisymmetric deformation of a cylindrical shell under initial deformation. 
example demonstrates the input preparation for a conical shell with asymmetric deforma- 
tions. 
metric pressures  as the shell passes through the atmosphere with a small  oscillation. 
The data preparation is discussed in detail for this practical application. 

The second 

The second example problem is a planetary entry "aeroshell" subject to asym- 

SYMBOLS 

The units used for the physical quantities in this paper a r e  given both in the U.S. 
Customary Units and in the International System of Units (SI). 
systems a r e  given in reference 7 and those used in the present investigation a r e  pre- 
sented in appendix A. 

Factors relating the two 

a reference (or characteristic) length 

b nondimensional membrane stiffness defined in appendix C 

d nonhmensional bending stiffness defined in appendur C 

E O  reference modulus of elasticity 

;,p nondimensional transverse meridional shear (see appendx B) 

f frequency 

h shell thickness 

reference thickness h0 
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L last boundary station 

Mt,Me7Mte,Met bending-moment resultants 

nsndimensional thermal-moment resultant defined in  appendix C 

modified twisting moment (eq. (8)) 

MT 

- 
8 

(n) (n) (n) nondimensional Fourier coefficients for bending moments mt "e "<e 

N 

n 

r 

(see appendix B) 

total number of stations 

membrane force resultants 

modfied membrane shear (eq. (7)) 

Fourier index 

first boundary station 

Fourier coefficients for loads (see appendix B) 

transverse shear resultants 

distributed loads in normal, meridional, and circumferential directions, 
respectively 

aerodynamic pressure 

radial distance from axis of symmetry to shell middle surface 

shell mer ihan  

Fourier coefficient for temperature 

Fourier coefficient for midplane temperature variation (eq. (30)) 

3 



Fourier coefficient for temperature gradient per unit thickness normal 
to middle surface (eq. (30)) 

- 
T inverse of frequency f; period 

t face sheet thickness 

- t time 

(n) t (n) t̂  nondimensional Fourier coefficients for membrane force resultants 

nondimensional thermal-force resultant defined in appendix C 

meridional and circumferential displacements 

nondimensional Fourier coefficients for meridional and circumferential 

t g  7 e 7 ge 

t p  

U$" 

displacements (see appendix B) 

W normal displacement 

W (4 nondimensional Fourier coefficient for normal displacement 
(see appendix B) 

a coefficient of thermal expansion 

P angle between a normal to the shell and fluid flow 

coefficients of backward difference expression - ~,P,5,7,~,E 

Y = P ' / P  

A 

E 

1 

e 
4 

meridional increment between interior stations 

time increment, E = E A T  

coor lna te  normal to and orginating at midsurface of shell, positive 
outward 

circumf e r  entia1 coordinate 



I 

X = ho/a 

v Poisson's ratio 

5 = s/a 

P 

- 
P 

Pa 

nondimensional radius, r/a 

shell density 

density of face sheets 

reference s t r e s s  

nondimensional time (eq. (9)) 

meridional rotation 

colatitude angle 

nondimensional meridional rotation (see appendix B) 

angle of attack 

amplitude of aeroshell oscillation (eq. (36)) 

nondimensional curvatures (eqs. (1) and (2)) 

Matrices : 

4 X 1 matrices 

A prime indicates a derivative with respect to 5 .  A dot indicates a derivative 
with respect to T. Note that the superscript n is dropped from the Fourier coeffi- 
cients when doing so would not cause confusion. 
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ANALYTICAL FORMULATION 

Shell Geometry 

The shell geometry and coordinates are shown in figure 1 and are identical to 
those used in reference 1. A point on the shell is specified by coordinates (,8,g where 
6 = s/a is the nondimensional meridional coordinate, s is the meridional coordinate, 
a is a reference dimension of the shell, 8 is the circumferential coordinate, and 
< is a coordinate normal to and originating at the middle surface, positive outward. 

Figure 1.- Surface geometry and coordinates. 
OP = r; OIP = a/y; and 02P = a/me. 

If the shape of the middle surface is given by p = p(6) where p 2 r/a and r is the 
distance OP, the nondimensional principal curvatures can be written as 

Y' + r2 0 5  = - 

6 

. ... . . ...... .,,.... , , .. --- - ...... -: - 



where 

,=p' 
P 

and the prime indicates a differentiation with respect to t .  

Dynamic Response Te rms  

The equations of motion for a shell are obtained from the equilibrium equations of 
reference 1 by the addition of the acceleration t e rms  as follows: 

n 

- ap(wt;Nt + w g N ~ )  + a 2 Pq = pEoh - a2w 
a 72 

where and at8 are defined in reference 3 as t o  

+ 

1 - 
M t e  = i ( M t e  

The nondimensional time T is 



The positive directions of the forces, moments, rotations, and displacements are shown 
in figure 2. 

(a) Membrane force 
resultants. 

e 

(b) Rotations and transverse 
force resultants. 

5 

( c )  Displacements. 

(a) Moment resultants. (e) Loads per unit area. 

Figure 2.- Positive sense of force, moments, shears, displacements, 
and loads on a shell segment. 

The Fourier series expansions of the unknowns in equations (4) to (8) and of +< 
and Qt a r e  summarized in appendix B in appropriate nondimensional form. By uti- 
lizing these relationships and the stress-strain and strain-displacement relationships, 
the governing second-order partial differential equations in matrix notation become 

where 
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and u (n), ujn), w ( ~ ) ,  and m (n) a r e  amplitudes of the Fourier harmonics of the 
three displacements and the meridional moment. The superscript n re fers  to the 
nth Fourier harmonic and is omitted hereafter for  purposes of simplification in notation. 
The dots represent derivatives with respect to time 7. The elements of the E, F, G ,  
and e matrices a r e  defined in both references 1 and 2 and are included in appendix C. 
The D matrix is 

5 5 

1 0 0 0  

1 0 0  

D = $ b  0 1 0  

0 0 0  

The vector y of s t resses  and moments is related to the vector z of displacements 
and rotations by the equation 

y = Hz'+ JZ + f 

where the H, J ,  and f matrices a r e  defined in reference 2 and appendix C. The 
vector y is defined to be 

The t5, tte, it, and $J components a r e  the Fourier coefficients (see appendix B) 
of the axial-stress resultant, t ransverse-s t ress  resultant, shear s t ress ,  and rotation 
variables. It is convenient to express the boundary conditions at either 5 0  or  tL, 
the end points of the meridional generatrix, in te rms  of the equation 

t 
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where the 51 and A matrices and 2 vector are chosen so that the prescribed dis- 
placements and forces at the boundary a r e  satisfied. It should be noted that the dynamic 
inertia te rms  affect only the equilibrium equations but not the boundary conditions. 

Computational Techniques 

The central finite-difference approximations used in equation (10) along the 
interior stations of the meridian a r e  defined in reference 1 as 

where 

(L A = -  
N - 2  

and where i = 2, 3, . 
first derivative of z 

. ., N - 1. Here N is the number of merihonal  stations. The 
and value of z at  the boundaries of the meridian a r e  

' 1  zo = 4- z2) 1 

The first  shell edge is located midway between stations 1 and 2 and the end of the merid- 
ian is located midway between stations N - 1 and N. The first and final shell edges 
a r e  denoted by subscripts 0 and L, respectively. 

10 



The time derivatives can be represented by backward differences (as in refs. 5 
and 6): 

( 2 = 0 , 1 , 2  , . . . ,  i = l , 2  , . . . ,  N) (19) 

- 
where 5 2 ,  p z ,  9, and z2 are constants which depend on the time step and which, in 
general (2 2 3), define a four-point backward second derivative. The constants k2 and 
& a r e  required for including nonhomogeneous initial conditions zi,o and i i , ~ .  The 
first subscript on z denotes the spatial station and the second subscript denotes the 
time station. Since zi,o and ki,o a r e  given initial conditions that allow zi,O to be 
calculated from equation (lo),  fictitious time points a t  2 = -1 and 2 = -2 can be 
obtained by using the difference expression 

where E is a time increment of T. Thus equations (20) and (21), the given initial condi- 
tions z -  
enough information to define the coefficients of equation (19). 

and ii,o, and equations (10) and (12) in finite-difference form comprise 130 
Therefore, at  2 = 0, 

$0 = 1 

at 2 = 1, 

6 - p1 = -- 
E 

I 

I 

J $1 = -2 

11 



at 2 = 2, 

a2 = - 

4 - 
62 = -- - i l  € 2  

and at  2 2 3, 

Equation (19) with the constants in equation (25) is the standard four-point backward 
difference expression for  a second derivative. In defining the initial con&tions zi,o and 
z i , ~ ,  only the displacement quantities which are the f i rs t  three elements of z need to  be 
prescribed since the components in the last row in matrix D are all zero. 

Thus, by utilizing equations (10) to (19), the governing equations become 

i ( i = 2 , 3 , .  . , , N - 1 )  

12 

I 



where 

2Ei c. -- - Fi ' -  A 

Thus equations (26) a r e  the complete set  of equations required to solve for the 
vector at all stations i out to and including time step 1 .  

Step Loads 

Step loads or suddenly applied loads represent a discontinuity in the load history at 
a point in time k and, in essence, impart an acceleration to the shell. 
time k, 

At this point in 



but 

The superscripts - and + indicate quantities obtained by taking the limits of the 
quantities at a time k from below and above, respectively. The acceleration z t k  is 
obtained from equation (10) with loads at k+ imposed along with the deflection and 
velocity at k. Thus, the problem becomes essentially another initial-value problem 
with initial conditions given at time k. With Zi,k, ii ,k, and Zi,k vectors computed, 
the problem is continued similarly to the sequence of equations (20) to (25). 

-. + 

COMPUTER PROGRAM 

Program Organization 

The program developed in this paper takes the basic program in reference 1 and 
modifies that program in two major ways. First, the program HGS of reference 1 is 
modified to include a time-step cycling procedure to account for the inertia terms. The 
second major change is that the Fourier coefficients for 11 variables N t ,  Ne, N t d ,  
Qt,  M t ,  Me, Mte ,  Ut, U,, W, and @t)  contained in appendix A a r e  summed for 
the ser ies  truncated at some value n and for each point in time 1 .  The value n at 
which the Fourier se r ies  a r e  truncated is supplied by the user. 

- 
- ( 

To accomplish the first modification the following subroutines were altered OF 

added to program HGS of reference 1. 

Subroutine Remark 

MAIN 

INPUT 

CALZ 

MAIN structures the program so  that HGS will calculate coeffi- 
cients of the 11 output variables at all interior stations i and 
boundary stations 0 and L for each station in time 1 and 
each Fourier variable n. It has been modified to include the 
inertial t e rms  and the time-stepping cycles. 

INPUT is a user-prepared subroutine which supplies the shell 
geometry. In addition, the time increment E is supplied by 
this subroutine for the time-dependent problem. 

The subroutine CALZ stores  o r  computes z i , ~ ,  i i , ~ ,  and z i , ~  
and is the only new subroutine added to HGS. 

14 



ABCG 

OUTPUT 

- 
The subroutine ABCG sets the coefficients CY, p, 7, 5, &, 

and f i  in equation (19) as well as elements of the A, 
and g matrices in equation (26). Note that B and g 
include time-dependent terms. 

B, C, 

The subroutine OUTPUT controls program printing. In addition, 
it s tores  the vectors Z i , l ,  z i ,~-1 ,  and zi,l-2 for use in 
time step 1 + 1 computations. 

The flow chart  of the present program follows. 

(T) 
Do to statement 

label 2, n = 0, 
NFOUR 

Set Fourier 
variable n 

Calculate 
matrix D 
(eq. (10)) 

geometry and E 

Call EFG Define E,F,G, 
at i = 2  equation (10) 

Call FORCE Define vector e ,  
at  i = 2  equation (10) 

Call ABCG Define A,B,G,g, 
a t  i = 2  equations (26) 

Reads Namelist 
FIRST (that is, 

Call INIT boundary con- 
ditions at  
station 0 )  

Do to statement 
Set point in Set spatial label 3, i = 3, label 19, 1 = 0, 

N - 1  station i 
Do to statement (7) TIME 

If 2 = 0  
o r  

Call CALZ If load discon- 
tinuous a t  
t ime step, 1 

Call HJF  Define H,J,f, 
at i = l  equation (12) 

I 

Call EFG 

Call FORCE 

9 
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Call ABCG 

Solve ABCG equa- 
tions by Gaussian 
elimination pro- 
cedure 

Call PANDX 

Reads Namelist 
LAST (that is, 
boundary con- 
dition at  i = L) 

Call F'INAL 

Q 

Q 
See equation (73) 

of reference 2 

Call OUTPUT 
(Print on tape) 

END of HGS 2 

Call SUMUP 

The second modification, that of summing the 11 variables at each t ime step, is 
accomplished by a followup program called SUMUP. Here SUMUP is actually a sepa- 
ra te  program that uses  the same control cards as the HGS program. Thus, there a r e  
two programs but only one deck. 
required time stations 2 and Fourier integers n of the 11 output variables on tape. 
The program SUMUP rewinds and reads the tape. 
summation of the truncated series by using the Fourier coefficient taped from HGS. 

The program HGS stores  the information for all 

Then SUMUP performs the series 

A listing of HGS and SUMUP is included in appendix D. Note that all subroutines 
which a r e  not discussed in this report contain COMMENT cards in the listing explaining 
their functions. In adhtion, an asterisk in the right-hand column denotes all the state- 
ments that differ from the program presented in reference 1. 
names of the variables is given in reference 1. 

The glossary of FORTRAN 

Input Data 

The input data are those of reference 1 with some deletions and additions. These 
input data are now read into program HGS through the Namelists INPUTD, FIRST, and 
LAST. The variable type R stands for a real (floating point) value and I denotes an 
integer quantity. The complete list of Namelist INPUTD quantities and their definitions 
follow: 

16 



Name 

NU 

TKN 

CHAR 

EALSIG 

IND5 

NMAX 

FREQ 

NTIME 

JUMP 

RUNTYPE 

NFOUR 

KTHTIME 

FORTRAN 
variable 

type 

R 

R 

R 

R 

I 

I 

I 

Description 

Poisson's ratio 

reference thickness , ho 

reference shell dimension, a 

Ea/uo, thermal coefficient used only if thermal 
s t resses  a r e  calculated 

an integer value of 0, 1, 2, or  3 

= 0, no poles; 
= 1, pole at 5 = 0; 
= 2, poles at t = 0 and tL 
= 3, pole at 5 = t L  

total number of meridional stations 

integer which controls the frequency for printing 
numerical results. Results a r e  printed at every 
FREQth station. 

number of time steps of size E which will be taken 

integer array (five elements) defining time stations 
at which a load is suddenly applied. 
required, then set  JUMP(i)  > NTIME. 

If not 

integer defining type of problem to be run: 

= 1, static case 

= 2, dynamic-response problem with either zi,0 
and/or k i , ~  specified by functions ZINIT 
and ZDINIT 

= 3, dynamic response problem 

last Fourier value to be summed 

time-station interval at which coefficients of the 
11 variables from N = 0 to NFOUR will be 
printed out. If none other than at the zeroeth time 
station a r e  desired, set  KTHTIME > NTIME. 

17 



The namelists FIRST and LAST describe the boundary conditions at station 0 and 
L, respectively, and a r e  required when IND5 of Namelist INPUTD fails to define a pole 
point at that station. 
The input quantities of Namelist FIRST a r e  

These namelists define the elements of the matrices in equation (14). 

Name 

OMEG1 

CAPLl 

EL1 

Type Description 

R a 4 X 4 a r r ay  defining the 52 matrix of equation (14) 

R a 4 X 4 a r r ay  defining the A matrix of equation (14) 

R a 4 X 1 a r ray  defining the I vector of equation (14) 

Similarly, the Namelist LAST quantities a r e  

OMEGL 

CAPLL 

ELL 

R a 4 X 4 a r r ay  defining the 52 matrix of equation (14) 

R a 4 X 4 a r r ay  defining the A matrix of equation (14) 

R a 4 X 1 a r ray  defining the I vector of equation (14) 

In addition to these input values there are various user-prepared subprograms. 
These subprograms, for the most part, a r e  adequately described in reference 1. 
include: 

They 

Subroutine INPUT(NMAX) defining the arrays of p, y, w8,  w 5 ,  w( and 
the increments A and E 

FUNCTION HHT(K, DEL) defining h/ho 

FUNCTION DHHT(K, DEL) defining (h/ho) ' 

FUNCTION HRA(K, DEL) defining h/t 

FUNCTION DHRA(K, DEL) defining (h/t)' 

FUNCTION P(K, DEL) defining p(n) 

FUNCTION PX(K, DEL) defining p (n) 5 
FUNCTION PT(K, DEL) defining p8 (n) 

defines z. 
170 

FUNCTION ZINIT(KK) 

18 



FUNCTION ZDINIT(KK) defines ki,o where 

KK = 1 corresponds to ut; and f i t  

KK = 2 corresponds to ut  and l ie 
K K =  3 corresponds to w and i% 

FUNCTION TEMP(K, DEL) 

FUNCTION DELT(K, DEL) 

FUNCTION DTEMP(K, DEL) 

defining T1 (n) 

defining AT1 (4 

defining T1 (4 ' 

FUNCTION DDELT(K, DEL) defining A T P ) '  where h and t a r e  the shell 
and face sheet thickness, respectively. 

The last four functions define the quantities and derivatives of the temperature 
equation 

where T1 (4 (<) is the Fourier coefficient of the temperature at  the reference surface and 

is the temperature difference between the inner and outer surfaces per  unit 
thickness. 

The two additional functions, ZINIT and ZDINIT, have been added for use with the 
initial conditions required for RUNTYPE = 2. 
replacements and velocities required by the initial conditions. 

These functions define the initial 

Program Output 

The output comes from both programs HGS and SUMUP. The output from the pro- 
gram HGS consists of a complete list of the input data and of the shell geometry in tabular 
form (that is, column format) at all stations. This output is followed by tabular listing of 
the Fourier coefficients of the 11 variables in program HGS at the FREQth stations and 
at the KTHTIME cycle for each value of n. The output of program SUMUP then follows 
with the complete summation of the Fourier se r ies  to n equals NFOUR for the 11 non- 
dimensional variables at each KTHTIME cycle. The printout of SUMUP is at a value of 
8 where 

0 = A K r  (31) 

and AK is an INPUTD quantity. 

19 
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Estimation of Increment Size 

A discussion of the meridional increment s ize  is contained in  reference 1. The 
s ize  of the time increment E from equations (19) to (24) also affects the results. Basi- 
cally, as the increment E tends toward infinity, the dynamic response is damped out. 
Thus, the increment E must be made sufficiently small. A s  shown in reference 4, the 
Houbolt method of initiating the problem and using backward differences is a stable 
method of numerical integration for transient problems. The selection can be made by 
comparing the results of increment s ize  where increment is decreased by one-half until 
agreement between the results is obtained within suitable limits. 

EXAMPLE PROBLEMS 

Cylindrical Shell 

The purpose of this example is simply to demonstrate the accuracy of the program. 
The problem is that of a simply supported cylindrical shell loaded laterally with an axi- 
symmetric sinusoidal pressure oscillating with respect to time. The simply supported 
boundaries a r e  free to displace in the ut-direction at each end. 
becomes 

The pressure q(t ,f)  

rt q( t , i )  = p(O) sin - cos 2 r f t  
( L  

For this particular example, the frequency f and pressure amplitude p(O) a r e  taken 
to be 

f = 10000 Hz 

The geometric parameters of the shell a r e  

s/r = 10 

r/h = 100 

h/t = 2 

20 



Since at f = 0, there  is an applied load on the structure, the initial displacements 
a r e  assumed to be 

- ne ut = u cos - 
<L 

85 W = W sin - 
4L 

where the amplitudes U and W a r e  calculated from exact linear theory (ref. 3) to be 

h = 0.107388 

- w = 1.11396 

Further, the initial velocity becomes 

i i ,0 = 0 

for all i. 

In figure 3 the dynamic response of the deflection W at 5 = 0.5 is compared 
with the exact solution by axisymmetric linear theory. The curve in fig- 
ure  3 shows that this numerical solution and the exact solution a r e  in close agreement. 
The numerical input for this problem w a s  

(See ref. 3.) 

NMAX = 21  

v = 0 . 3  

AT = 0.1 sec  

p = 0.000259 - K; ( 7 . 2 2 1 3 )  

21  



1.2  

0.8 

0.4 I 

-0.8 

-1.2 

Exact results 
- -  Present results 

0 1 2 3 4 st/ i 

Figure 3.- Dynamic response of the deflection W at tL/2 for cylindrical shell example. 

Conical Shell 

Description. - In order to demonstrate the data preparation required for using this 
program, a practical aeroshell problem is analyzed. 
cated conical shell of sandwich construction studied in reference 8 has been selected. 
For this shell the loading is the aerodynamic pressure q acting laterally on the shell as 
it passes through the atmosphere. In addition, the shell axis has a small wobble o r  angle 
of attack I,L which oscillates as a function of time, and thereby causes the loading to be 
applied asymmetrically. The purpose of such an analysis could be to ascertain whether 

the oscillations of the shell axis cause any s t r e s s  buildup in the s t r e s s  resultant Ne. It 
would be expected that any increase in Ne would have an important effect on shell 
instability. The shell cross  section along with i ts  physical dimensions is shown in fig- 
ure  4.  The face sheets a r e  made of aluminum and have a density pa of 0.1 lb/in3 
(2.8 Mg/m3) and the core honeycomb has a density equal to 0.03pa. Thus, the average 
density of the shell ii is given by 

The simply supported 1200 trun- 
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f i g u r e  4.- P h y s i c a l  dimensions of t he  c o n i c a l  shell. 

- p = pa(: + h 

The dynamic forces are the Newtonian impact forces on the shell as it passes 
through the atmosphere with a small  wobble +b and are defined to be 

p = -2q cosap  (33) 

where p is the angle between the normal to the shell reference surface and direction of 
the fluid flow and H is the aerodynamic pressure.  Since @ is the colatitude angle 
(see fig. 1) of a point on the shell meridian, equation (33) becomes 

p = - 2 ~  1 sin2 +b sin2 4 + cos2 1c/ cos2 @ + 2 cos IC/ cos @ sin 1c/ sin @ cos e 
(2 

sin2 IC/ sin2 @ cos2 e + z  ) (34) 
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Thus from equation (34) and appendix B, the Fourier pressure coefficients become 

p(0) = -q(sin2 + sin2 4 + 2 cos2 rc/ cos2 G) 

p(') = -4q(cos + cos q5 sin + sin q5) I (3  5) 

p(2) = -q(sin2 + sin2 .$) 

Here the angle +(t) is given by 

J 

where IC/ is the amplitude of the oscillation and, for this example, is 5' or n/36. The 
frequency of oscillation f is 10 Hz. 

From equation (12) the simply supported boundary a t  i j  = 0 yields the conditions: 

- 
0 0 0 0  

0 0 0 0  

0 0 0 0  

0 0 0 0  
- 

1 0 0 0  

0 1 0 0  

0 0 1 0  

0 0 0 1  

The edge at  5 = tL is pinned and restrained from horizontal displacement but 
allowed to displace in the vertical (axial) direction; thus, 

- - 
0 0 0 0  

0 0 0 0  

-sin @ 0 cos @ 0 

0 0 0 0  
- 

The initial conditions a r e  taken as 

zi,o = ii ,0 = 0 

+ 

cos @ 0 sin @ 0 

0 1 0 0  

0 0 0 0  

0 0 0 1  

r .  

0 

0 

0 

0 
, .  
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Namelist INPUT.- In keeping with the definitions in section on input data, the 
Namelist INPUTD values become 

NU = 0.32 

TKN = 0.54 

CHAR = 90. 

EALSIG = 0 

IND5 = 0 

NFOUR = 2 

NMAX = 76 

FREQ = 2 

JUMP(1) = 82,83,84,85,86 

NTIME = 81 

RUNTYPE = 3 

KTHTIME = 82 

AK = 0. 

The boundary conditions required for Namelists FIRST and LAST have been given 
in equations (37) and (38) and correspond with equation (12). In Namelist format the 
values for Namelists FIRST and LAST are:  

OMEGl(1,l) = 16*0. 

CAPLl(1,l) = 1.,4*0.,1.,4 *0.,1.,4*0.,1. 

ELl(1) = 4*0. 

OMEGL( 1,l) = 2 *O. , -0.5,7 *O. ,O. 866,5 *O. 

CAPLL( 1,l) = .8 66,4 *O., 1 .O, 2 *o . , .5,6 *O . , 1 .O 

ELL(1) = 4*0. 
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U s e r  -prepared subprograms. - The pertinent statements for the conical geometry 
to be described in subroutine INPUT (see appendix D) are 

RI = 40.1 

RO = 90.0 

PI = 3.1415926535979 

ANG = PI/6 

DEL = (RO-RI) /(RO *COS(ANG) *FLOAT(NMAX -2)) 

R(NMAX) = 1.0 

R(1) = R I B 0  

DELR = (RO-RI)/FLOAT(NMAX-2) 

R(2) = R(l)  + DELR/2 

NM1= NMAX -1 

DO11 = 3, NMI 

1 R(I) = R(I - 1) + DELR 

DO21 = 1,NMAX 

GAM(1) = COS(ANG)/R(I) 

OMT(1) = SIN(ANG)/R(I) 

OMxI(1) = 0. 

2 DEOMX(1) = 0. 

C IF RUNTYPE = 2 OR 3 THEN SET EE AND RHO TO FIND TIME INCREMENT, EPS. 

C HERE EE IS THE MODULUS OF ELASTICITY AND RHO IS DENSITY (LB/IN**3) 

GACC = 386.088527 

EE = 10500000. 

RHOA = 0.1 
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RHO = RHOA*2.75/27. 

ss = EE/RHO 

EORHO = SS*GACC 

EPS = SQRT(EORHO/CHAR**2) *TIM 

A complete listing of the program is contained in  appendix D. The statements 
required for the function subprograms become 

HHT = 1.0 

DHHT = 0. 

HRA = 27. 

DHRA = 0. 

PX = 0. 

P T  = 0. 

TEMP = 0. 

DELT = 0. 

DTEMP = 0. 

DDELT = 0. 

ZINIT = 0. 

ZDINIT = 0. 

It should be noted that the left-hand side of these statements defines the function subpro- 
gram in which the statement is used. The statements required for function P(K) a r e  
more involved. By setting in equation (35) equal to unity and recalling equation (36), 
the required statements become 

PI = 3.14159265358979 

CPS = 10. 

TIM = O.O5/CPS 
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TAU = FLOAT(JT1ME) *TIM 

A 0  = 5. 

A = AO*PI/180. 

FEE = PI/6. 

PSI = A*SIN(CPS*TAU*2. *PI) 

Q = 1./LAM 

SA = SIN(PS1) 

CA = COS(PS1) 

SF = SIN(FEE) 

C F  = COS(FEE) 

P O  = -Q*(SA*SA*SF*SF + 2. *CA*CA*CF*CF) 

P1 = -4. *Q*CA*SA*CF"SF 

P2= -Q *SA*SA*SF*SF 

IF(N.EQ.O.)P = PO 

IF(N.EQ.l.)P = P1 

IF(N.EQ.2.)P = P2 

Output.- The results generated by the program HGS are summed by the followup 
program SUMUP. The tabular results a t  8 = 0 (that is, AK = 0 in Namelist INPUTD) 
a r e  printed for the 11 variables and are shown for t ime t = 0. It should be noted that the 
output is nondimensional. In other words, the multiplicative constants involving oo, ho, 
a, and Eo in front of the summation signs in appendix B are not included for the output 
results. In order to get dimensional results, these nondimensional results must be multi- 
plied by the appropriate constants of appendix B. 

-_ 
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34 
36 
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40 
42 
44 
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For this particular example, the maximum s t r e s s  resultant value of No which 
occurs at 4 = 0 . 7 0 5 ~  is plotted in figure 5. Also included are the results when the 
oscillation frequency f is 1 Hz or 100 Hz. In figure 5 the time axis is made nondimen- 
sional by T, the time required for one cycle of oscillation (T = l / f ) ,  for ease in com- 
paring different oscillation frequencies. The time increment E taken for this example 
was 0.05T. The difference in the results for frequencies of 1 Hz and 10 Hz is negligible 
whereas for the 100-Hz case, there is substantial increase in compressive s t ress .  The 
time-response values at 1 Hz and 10 Hz settle down almost immediately to a harmonic 
steady-state response pattern whereas the 100-Hz curve is still nonharmonic after four 
cycles because of the larger change in zi,o. 
rapidly in this case that the rate of change in loading is approximating a step load. 

The change in pressure is occurring so 
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Figure 2.- Maximum stress resultant ( 5  = 0.70 and e = oO) as a 
function of time for various oscillation frequencies. 

CONCLUDING REMARKS 

This report describes the development of a computer program for the linear asym- 
metric bending behavior of a statically or dynamically loaded elastic thin shell of revolu- 
tion subjected to either thermal o r  mechanical loads. The program is an extension of the 
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static analysis described in NASA T N  D-3926 to include dynamic loads and summation of 
Fourier components. These changes required the addition of the dynamic te rms  in the 
equations as well as the restructuring of the program to include the initial conditions and 
backward numerical integration of time derivatives. Two examples, demonstrating the 
flexibility of the program as well as the data preparation required, have also been 
included. The first example, response of a thin cylindrical shell to an oscillating pres-  
sure, demonstrates the accuracy of the program for dynamic-response analysis. 
second example is used to demonstrate the preparation of user-supplied data for a prac- 
tical analysis. 

The 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., September 22, 1970. 
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APPENDIX A 

CONVERSION O F  U.S. CUSTOMARY UNITS TO SI UNITS 

The units used for the physical quantities in this paper are given both in the U.S. 
Customary Units and in the International System of Units (SI). Factors relating the two 
systems a r e  given in reference 7 and those used herein a r e  given in the following table: 

Physical quantity 

Length 

Density 

Modulus, elastic 

~. 

~~ .. 

I 

I U.S. Customary 
Unit 

. .  

in. 

lbm/in3 

psi = lbf/in2 
- 

Conversion factor 
(a) 

0.0254 

27.68 X 103 

6895 

SI Unit 
. -  

(b) 

meters  (m) 

ki 1 og r am s /m et e r 

newtons/meterz (N/mz) 

(kg /m 3) 

aMultiply value given in U.S. Customary Unit by conversion factor to obtain 

bprefixes to inchcate multiple of units a r e  as follows: 
equivalent value in SI Unit. 

micro (p) 
milli (m) 
kilo (k) 

__ -. 
gigs (G) 
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APPENDIX B 

FOURIER SERIES EXPANSIONS 

The Fourier se r ies  expansion of the dependent variables in the circumferential 
direction is presented in this appendix. The constant te rms  to the left of the summation 
symbol a r e  required to nondimensionalize the ser ies  coefficients in a consistent manner. 

03 

N t  = uoho 1 tin) cos ne 
n=O 

00 

Ne = ooho 1 tp) cos ne 
n=O 

n=O 

n=l 

03 

u -  a u ~  2 u p )  cos ne t -E, 
n=O 

u -- u p '  sin ne e -  Eo 
n=l 
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I I I 111 I 1  I I I 1  I 1  111 

03 

I .1-11-1.1.-..11 I . , ... . 

APPENDIX B - Concluded 

03 

Qt = aoho 2 :in) COS ne 
n=O 
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APPENDIX C 

DEFJNITION OF MATRICES 

As shown in reference 2, the nonzero elements of the matrices E, F, G, and e 
are:  

b(1 - v) X2d(1 - v)(3wg - ut)2 
8 

E22 = 2 + -  

E33 = A2d(l - V) - + (1 + V ) Y ~  K 1 
2 E34 = A  

F13 = b(wt + vue> + X2d(l - V) (1 + v ) ~ 2 w  + -@wt - we> [ 4 2 9  ] 
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APPENDIX C - Continued 

F21 = -F12 

F34 = h2y(2 - V )  

8P2 
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APPENDIX C - Continued 

n2w5 
G31 = -by(we + VU[) + h2d(l - v) + y2wt - p2 

2 
h2d(l - v)n2kl + 4 ( w t w g  - p2 n G33 = -b w t  + 2vw w + w 

P2 
( t e e2)+ 

37 



. . .. .... .. . 

APPENDIX C - Continued 

- V ) W < W ~  + vn21 P 

dvnw e 
G42 =p 

d vn2 G43 =- 
P2 

e4 = MT 

where 

J 
b =  

Eoho(l - v2) 
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APPENDIX C - Continued 

The nonzero components of the H,J,F matrix (ref. 2) a r e  

H i 1  = b 

(3ws - 
b( l  - v) + Xzd(1 - v) 

H22 = 2 8 

h2d(l - v)n 
H23 = zP (3% - ut )  

(3we - q) X2d(l - v)n 
H32 = ~ 2P 

H33 = X2d(l - u)[$ + (1 + v)?] 

H34 = A2 

H43 = -1 

Jl l  Vyb 

unb 
512 = p  

I 

b(l  - v)n dA2(1 - v)n 
J 2 1 =  - zp - -  8~ ( 3 q  - 4 ( 3 w E J  - wt) 
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APPENDIX C - Concluded 

522 = ‘W22 

h2d(l - v)yn 
2P 532 = - [3We - W l  + 2(1 + v)wJ 

533 = -h2d(l - ~ ) ( 3  + v)- Yn2 

P2 

534 =h2(1  - V ) Y  

F3 = h2y(l - V)MT 
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APPENDIX D 

PROGRAM LISTING 

The complete listing of the program with both the HGS and SUMUP programs follow. 
The asterisks on the right-hand edge indicate those statements added to or modified from 
those given in the HGS program of reference 1. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

APPENDIX D - Continued 

C KUPi 
C RUlL 
C KUN 

12 

PKOGKAM HG-C ( I ~ P L T I O U T P U T  , T A P E S = I  NPUT 1 TAPE6=OUTPUT ,TAPE 14) 
N A I N  PRCGRbC 
T H I S  PRCGRblF C C h S I S T S  O F  T H E  M A I N  PROGRAM TUGETI+ER W I T H  THE FCLLOYING 
SUBKOUT I h t S  
MAT I N V  
EFG 
OUTPUT 
S T R E S S  
E973 
I N I T  
F I N A L  
FUKCE 
PANDX 
At lCG 
H F  J 
K L T  
BLt3 
P U L E  
I N  A C O I T I C h  T O  THE A B O V t  T t - E  USER MUST SUPPLY THE FLJLLCWING S L B  
R O U T I N E S  d h E  F U h C T I C N S .  
S U R K U U T I I V t  JNPLT- -CbLCULAT E S  T t E  S H E L L  GECMETKY. 
I - U N C T I O N  P - S P E C I F I E S  T I - €  hURMAL P R t S S U K E  O I S T R I B U T I O N .  
I - U N C T I O N  PX-SPEC1 F I E S  TI - t  M E R I U I U N A L  PRESSURE O I S T R I R U T I O N .  
F U N C T I C R  F l - S P E C I F I E S  TI-€ C I X C U K F C K E N T I A L  PRESSURE U I S T K I t 3 U T I C N  
F U N C T I C h  T E P P - S P F C I F I t S  T h E  V E K I D I C N A L  T t Y P E R A T U & E  O I S T K I B U T I U N  
F U l i C T I U h  CTEMP- S P t C I F I E S  T k k  D E k I V A T I V k  OF THE TEMPbRATUKE 
F U N C T I C h  C E L T -  S P E C I F I E S  T I - E  D I S T R  I S U T I L N  O F  THE TEYPERATURE 

F U F t C T I U N  CCELT- S P E C I F I E S  RATE OF CHANGE OF UELT 
F U . \ C T I C h  I - t T - S P E C I F I t S  TI-E S H E L L  T H I C K N C S S  D I S T K I H U T I O N  
F U N C T I O N  C t - I - T - S P E C I F I E S  THE U E l i I V A T I V t  OF T I i E  THICKNESS.  
F U N C T I C h  h F b - S P E C I F I E J  TI -€  C I S T R I B U T I U h  O F  T t i t  K 4 T I O  O F  THE 

TCTAL T H I C K N E S S -  T C  -COVEK P L A T €  T H I C K N E S S .  
F U N C T I O N  OI-Rb- THE C E K I V A I I V E  O F  THE A t l C V t  K A T I O .  
I N T E G E R  F K E G , C Y ~ R ~ S P ~ J C U N D R Y I  R U N T Y P t  
R E A L  k U 9 L A P r h 9 J b Y  

V A R I A T I C h  THRCUGti T H E  T H I C K N E S S .  

LCVt'Uh 
3 / B L 3/  N U 9 L P C 9 N 9 E A L S I G t C HAY 7 0 t L 
b / O L C / A ( 4 , 4  ) v I ? ( 4 . 4  1 r C ( 4 r 4 t v  S P A G ( 4 )  
7/BL 7 / ?  E L  ( 4 1 4  t 1 C 2  1 9 X I  4 7 1 C Z  
9 / B L ' I / D  ( 4 . 4  1 ,  ZECT ( 4 1  1 0 2  v L O D I j T ( 4 r  102) r E P S  
A / B L  IO/ Jl I P  E 

C / B L  1 2 /  I h  1 T 2 

G / B L l b / T A U  

C L ~ ~ D N / P L l 1 / Z S P V t 1 4 ~ 4 r  102) 

b / B L  1 4 / D C 1 1  It', CPS 

H / R L 1 7 / K T H l I M E  
K / H L I H / R L N T Y P E 1  J U P P ( 5 1  

U I M t N S I C N  Z 1 4 ~ 1 C 2 ) ~ I P I V C T ( 4 ) ~ I N D € X ~ 4 ~ 2 ~  
t QU 1 V A L  ENC E I X ( 1 . 1  1 9 Z I 111 I I 
& A M E L I  S T / I h F L T C / K L  r T K h r C H A R t  EALS I G .  Ih'C5. 
hFi.l!Jl(, h P A X  r F H E G .  JUPPvNTIME,KUNTYPE ,KTHT I P t  1 AK 
YPF = 1 S l A T I C  C A S €  
YPE = 2 C Y h A P I C  R E S P O h S E - - I N I T I A L  C E F L E C T I O N S  
YPE = 3 C Y h A P I C  R E S P O N S E - - I N I T I A L  L 3 A D S  
k t A C  ( 5 1 1 h F L l C )  
P R I N T  I h P U T C  
HT=r (UNTYPE 

3 1  F U K P A T ( 7 L I -  
K E A I ) l  5 1 - 3 1  1 

1 1 
WR I T t (  6 9 3 1  1 
J T I  VE=O 
N=O. 
L A M = T K h / C k P P  
& = I  

3 

f 

* 
d 
L .. 
x 
j4 

f 

* 
x 
f 
3 

0 
f 
3 

* 
8 
f 

* 
f 
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APPENDIX D - Continued 

2 J t ti RM A T  I I d  1 I 1 5 t T 1 HF I TE H A T  I O N  1 5 / 1 ' l H  A t  A L T I MF 3 X  t 15.8 I 5 X*P ( 1 I =* 
1 t 1 5 . 7 1  

3tJ 

17 

L @  

0 

1 

14 

Y 

b 

1LJ 

1 2  

2 1  

1 Y  

L 

C U Y  T I N  L E  
I F  1 J T I P t . h f . C l  GC T i l  17 
I F  ( K U h T Y P E . E C . 1 1  GC T G  16 
I F  I % U h T Y P E . E 6 . 3 1  GU T O  16 
L A L L  L U L L  (hlJAX, I & C 5 1  
rdPI (1hT-2  
C A L L  C U T P l i T  I FREQINCAX OEL I N P R I N T  I 
c i:x T I N L E 
IT- ( J T I C t . h E . J L P P ( J J J 1 1  GU TO 16  
L A L L  C A L Z  ( h V A X , I k C 5 1  
J J J = J J J + l  
h P t l I k T = 3  
I F  ( ~ ~ h l Y ~ E . t C . 2 . A h C . J T I ~ M ~ . t ~ . O )  GO T O  10 
CALL H F J  ( l p I h C 5 , h M A X ~ Z . J  
L A L L  t F C (  2 ,  I h C 5 , N P ' e X l  
C A L L  F C d C E  l 7 r I h D 5 r h P A X l  
K = L  
L A L L  A I ? L G ( K  I 
C A L L  I h I T  ( I h C S r H C b K D K Y  1 
I\ M A X 1 = h tJ P X - 1 
U d  6 K = 3 , b F b X l  
C A L L  E F C ( K , I h C 5 , W t ' A X J  
L A L L  k C P L E l K ~ I h C 5 , h P A X l  
L A L L  A t r C G ( K 1  
C A L L  P A h C X ( K 1  
C A L L  
L A L L  k l h A L  ( ' \ V E X ,  I N C 5 , ? C U k C K Y l  
U L  7 L = Z , h t ' P X l  
K="IPAX * 1 - L  
L A L L  t L 7 j ( K l  
Ik( I ~ U ~ . ~ G . C . C h . I h C 5 . E G . 3 1  G I 1  TO 1 4  
C A L L  L C 7 3 1 1 J  
LL  TC 1 5  

H F  J (  h t '  D X  I I h I l 5  9 hMAX 9 7 . 1  

L A L L  E t L l Z t I h C 5 r N ~ V P X l  
L A L L  t C K : C E I Z r  I h c 5 9 h t ' A X l  
K = L  
L P L l  A H C C ( K  I 
01, 5 1 = 1 , 4  
5 l = C .  
5 c = c .  
0 1 .  4 J = 1 , 4  
5 1 ~  S 1 +  D ( I I J I *  Z ( J t  3 I 
5 Z = > 2 t U  ( I v J I * Z  ( J  9 2 1 
51d ,AG( I  ) = 5 P A C (  IJ-Cl-S? 
L A L L  
uc 10 1 = 1 , 4  
L ( 1  r l l = S P P C ( I l  
c A L  L s 1 i<t c. s ( F P L C .  k r p x ,  1lu115 I 
CALL L L  Tf 'L l  

N A l  I h V ( C  r 4 r  ?PAC,  1 , U C  T ~ R M I  I P I V C T ,  I N C t X p 4  I I S C A L k l  

I F  REC,,hCPX , CF.L * I \PH I I\IT I 
I F  ( u U I L T Y P €  . h L .  3 1 G L  T O  2 1  
I F  ( J r 1 F . t  . h F .  J U t ' P ( J J J I 1  G C  Trl 71 
I h I  T L = l  
L A L L  C D L L ( h P b X ,  I h l C S l  
h P k  1 & T = L  
C A L L  C L T P L T ( F R k 6 ,  k t ' 4 X .  ISEL, N P R I N T I  
J J J = J J J + l  
C L A  r I r u C E  
bl:UhDI<Y = 1  
I F  ( ( K L k T Y F f  .EG. 1 1  .Ahl;. I k  . € 0 .  k L U h T ( N F O U R l l 1  STOP 

IF- ( R b k l Y F L . h C .  1 1  Q U N T Y P E = 3  
C LN T I N L E 
I F  I # \  . t G .  F L C P T 1 h F C U K ) l  STOP 
Ll!NT IhLE 
G L  TC 1 2  
t. hi? 

9 
9 
t 
9 
9 * 
* 
4: * 
4 * * * 
* 
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APPENDM D - Continued 

HI3 u h UR Y = 0 
If  ( I h  . h E .  
N P I < I h T =  1 
1i- (I\; . t 1 ; .  I : .  
J J J = 1  

J T I  Y E =  I I- 1 
I f 4 1  r z = o  
0 = P  ( 11 
1t- ( N L I C I J T I P t  
h K I T F ( 6 , 2 C I  J 

ou LCI i i = t , h r  

I !  @CUNUHY = I  

* 
B 
* 
4; 

4 
4: * 
c 
* 
* 
5 
.. 
* 
f 

t 
3 
4 
* 
* 
* 
* 
* 
* 
* 
3 
c 
* 
* 
3 
4: 
c 
4 
* 
* 
t 
f 
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8 
8 
* * * 
8 
8 
* 
8 
8 
* 
d: 
d: * 
8 
* 
* 
4 
8 
* 
d: 
0 

4 
4 
4 
4 
t 
d: 

t 
8 
4 
0 

4 
4 
4 
4 
4 
9 
4 
4 
t 
* 
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APPENDIX D - Continued 

l ( 2 . * D E L * * 2 )  
C A L L  BOB ~K.DEL~NUIBLKL,BLKZ.OM~BLK~) 
P E E ~ 4 r 3 ~ 1 ~ ~ D ~ * ~ ~ W D P + O M X I ~ l ~ * U X I P + ~ D E O M X ~ l ~ + N U * G A M ~ l J * O M X I ~ l ~ ~  

PEE14,3.1)=C.C 
l*PRO1-NU*GbM~l)*WP+NU*(N/R(l))**2*PRO3+NU*(N/R( l ) ) * O M T ( l ) * P R O 2 )  

GO TO 2 
4 Y P = ( P E E  ( 3  93 9 R k P X j - P E E  (3.3. NMAX-1) / O E L  

U X I  P=( P E E  ( 1 1 3 i k M A X ) - P E E  (1.3. hMAX-1)  ) / D E L  
WDP=(3  .*PEE (39 3 r N l r A X  ) - 7 - * P E E  ( 3 ~ 3 .  NMAX- 1 )+5.*PEE (39 3 ,  NMAX-2 

C A L L  BCB (K.OEL.NU.BLKLrBLK2rDnrBLK3) 
P E E  (4.3. h C b X  )=DC*  (-WOP+OMX I ( k H A X ) * U X I P +  lOEOMX(NMAX)  +NU*GAM I NMAX) 

1 -PEE(  3 93 9 RCPk-3  ) 1 / (2 *DEL**+? 1 

l * O M X I  ( NMAX 1 )*PRLl-NU*GAM(NMAX)*WP+NU* ( N / R ( N M A X  1 ) * * Z * P R L 3 + N U *  
2 ( N / R ( N P b X )  ) * f l P l ( N M A X )  * P R L 2 )  

P E E ( 4 . 3 , h k b X ) = C . O  
GO TO 2 

5 C A L L  B G B  ( K , O E L . N U . @ L K l . B L K Z r G M ~ E L K 3 )  
P E E ~ 4 ~ 3 ~ K ~ ~ D C ~ ~ ~ W O P + U n X I o * U X I ~ K ~ * U X I P + ~ D E O M X ~ K ~ + N U * G A M ~ K ~ ~ * P E E ~ l ~ 3 ~ K ~  

l - N U * G A H  ( K  ) * W P i h U *  ( N / R  ( K  1 )  * * 2 * P E E (  3 
Z * P E E  (2 t 3 * K 1 ) 

37 K 1 +NU* ( N / R  ( K  1 1 * O M T I  K )  

2 C O N T I N U E  
P R 0 4 = P E E ( 4 , 3 r l )  
P R L 4 = P E E ( 4 * 3 r h M A X )  
P E E  ( 4 9  3 , 1 )=2.*FR04-PEE i 4 9 3 . 2  ) 
P E t ( 4 r 3 ~ N k A X ) = 2 . * P R L 4 - P € € ( 4 , 3 ~ N f l A X l )  

12 N W A X l = k C A X - l  
I F  ( R U A T Y P E  .EC. 2 )  GO TO 2 1  
DO 11 K = 2 r L P A X l  
DO 11 J z l . 4  
Z D O T (  J , K )=  ( 11- * Z S A V E (  J .41 K 1-18.  *ZSAVE 1 J 1 3 1  K )  +9.*Z SAVE ( J  1 2  9 K )-2.* 1 1  

1 2 s  AVE ( J 9 11 K 1 1 / ( 6 -  *EPS 1 

C A L L  EFC- ( K , I h C S v N M A X )  
C A L L  F C R C E  ( K I  I k D 5 7 N M A X )  

DO 10 I = 1 1 4  

2 1  00 9 K = Z i h P P X l  

C A L L  A E C G ( K )  

SUM=O. 0 
oa 20 ~ = i . 4  

2 0  S U M = S U C ~ A ( I I J ) * P E E ( J I ~ ~ K + ~ ) + ~ ( I I J ) * P E E ( J ~ ~ . K  ) + C ( I , J ) * P E E I J , 3 r K - l )  
10 ZDDOT( I,K)=( SLIC-SPAG( I )  I / (  2 - * O E L )  

Z D O O T ( 4 r K ) = O - C  
9 C O N T I N L E  

KETURN 
END 

* * * * * * * * * * * * * * * * * * * * 
* * 
* 
* 
9: * 
* 
9: * 
* 
* * * * * 
9: 
* * * 
9: * 
* * 
* 
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APPENDIX D - Continued 

SUBKUUT I N €  k F  J (KI I h 0 5  I Nt’AXrYAH) 
C S U D R U U T I N E  k F J  T h I S  S U B R O U T I N E  C A L C U L A T E S  T H E  E L E M E N T S  O F  T H E  HIFI 
C A N 0  J M A T R I C E S P A S  C E F I N E O  I N  A P P E N D I X  A OF R E F E R E N C E ( 1 ) r A T  THE S T A T I O N  
C S P t C I F I E O  B Y  TbE IhDEX K. 

COMMON 
l / B L l / R (  102 )  * G A P (  l C 2 ) r O M T ( 1 0 2  I v O M X I  (102) r D E O M X (  102)  
3 / 8 L 3 / N U r L A C  *I\ I E A L S  IC. CHAR, DEL 
S / B L S / H  (4 1 4  ) r F F  (4) I J P Y (  494) 

K E A L N U  .LAN I N  I J A Y  P L2 
C A L L  B C d ( K I O E L r ~ U ~ B ~ D B r O ~ D 0 )  
L 2 = L A M * * 2  
Ul= (1  .-hU 1 
O X = C C X I ( K )  
KEG=O. 
I F ( Y A H . E C . 2 . )  R E G = l .  
E A L = E A L S I G  . 
T = T t M P ( K , C E L )  
D L T = D E L T  ( I( P C E L  
H l = H H T (  K.O€L)  
H R R = H R P ( K , L E L )  
F F  I 1 Iz-2. *I- l * € A L /  ( D l * H R B ) * T  
F F (  2 ) = C .  
I - F ( 3 ) = L 2 * C ~ A R * E A L * C L T * H 1 * * 3 / 3 . * ( 1 . 5 / H R B - 3 . / H R ~ * * 2 + 2 . / H R B * * 3 )  
F F (  4)=0. 
I F (  I N U 5  ) l r l 1 2  

L I F ( ( ( I N C 5 - 2 ) . L E . ~ ) . b N O . ( K . E C . l ) )  GO T O  8 
I F  ( ( (  I k C 5 - 2  1.GT.O 1 .ANU. (K.EU.NMAX) 1 GO TO 8 

1 G A = G A M [ K J  
F F (  3 ) = F F  ( 3 ) * G A  
R A = H  ( K  
U T = O M T  ( K )  
ENR=N/ R P 
U X T = 3 . * C C X I  ( K I - C C T ( K )  
U T X = 3 . ~ C r T ( K ) - C M X I ( K l  
D L = U * L Z * D l * E h R  
H (  1 ,1  ) = E !  
H(1.2 )=C. 

H(1,4)=C. 

H ( 2 . 2  ) = B * C  1 / 2 . + L 2 * D * D 1 / 8 . * O T X * * 2 * R E G  

H (  1 1 3 ) = C .  

H ( 2 1 1 ) = C -  

H ( 2 , 3 ) = O L / 2 . * C T X * R E E  
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- D L  / 8 .  * C X T  *OT X * R E G  
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APPENDIX D - Continued 

S L H k U U T l h E  OUTFUT ( F K E G t N M P X t O E L , N P R I N T )  
C SUi jRJUTIFUE L ' U T P L T  T H I S  S U H R C U T I N E  CONTRCLS PROGRAM P R I N T I R G  AND 
C PUhCt1 IYG.GEL i t4E lR IC  D A T A  IS P ' I INTED I F  I N 0 1  IS N U T  EQUAL TO ZERO.ANY 
C OK A L L  CC T b E  E L E V F N  OL'TPUT Q U A A T I T I E S  C A N  eE PUNCHED (3Y S U I T A B L E  
C S P t C I F I C A T I L N  C F  T I - t  F I E L O S  OF THE NOL CARD 

CCMPUN 
L / b L l / R (  1 C 2  1 , G P M I l C Z )  ,OMTI 1 C 2 )  r U M X I  ( 1 0 2 )  r D E G M X ( 1 O Z I  
7 / B L  7 / P E F  ( 4  94 t 1 C 2  f r X  ( 4 1  1 C 2 f  
Y / B L 9  /D ( 4  9 4  1 s ZCOT ( 4  v 102 1 T L U D C T  (4 t 10 2 1 t E P S  

B / b L  11/ Z S P L  E ( 4  r 4  t 1 C 2  1 
A / B L l O / J T  I P E  

H / B L 1 7 / K T h 3 I M E  
I j I M E N S  1C.h J J ( l l ) , K K (  l l f ~ E S S ( 1 0 2 I , Y O K D ( 1 0 2 )  
t Q U I V A L E h C F  ( X ( l , l ) ~ E S S ( l ) ) r ( X ( I t  2 7 ) r Y U K D ( 1 ) 1  

b C  T G  ( 1 C C C , l C C l ~ l O C l ) ~  N P R I h T  
I N T E G L H  k R E C  

LOUU k i K I T t ( 6 . 1 1 )  ' 

1 1  F U K M A T ( / / 7 X 4 t R / R e , 1 2 X 4 ~ Z / U B , l 2 X 4 H S / R ~ , E X l l H ~ M E G A  THETA*7XBHCMEGA X 
1 1 , 7 X l O h C E O P E G P  X I  ,HX5HGAMMA/ I  

L E U = O .  
s=o. 
C[J 8 I = l , A P A X  
1 F (  1-1 ,e,e,s 

Y O E F = U t L  
I F (  I I .EC.2 1 .CR.( I ,tG.NMAXf )CEM=.5*DEL 
5 - 5  +LIE P 
AR G U= U E C 9 rP i - I H I I 1 - H I I - 1 ) I * * 2 
l k ( A K L b . L E . C . 1  GC TC R 
L E D =  Su H T ( PRGU 1 +ZE 0 

C) N R  I T F I  6 112 ) R  I 1  1 7 Z E D t S  t CMT ( I 1 .OMXI ( I I v D E C Y X I  I I ,GAM I I 1 

KETUF?N 

NMA X l = k C A X -  1 
UC h J - 1 . 4  
P k E (  J v  5 . 1  I = - S * ( P F F (  J , 3 r l ) + P t E (  J,3,2 1 )  
P e t  I J, 3 t h P 4 X  ) =  - 5 9  ( P E E  ( J 9 3 t hMAX 1 ) + P E E (  J, 3 7 N M A X )  
Z D O T I  J r l f  = .5+  I Z C O T  I JI 1 ) + Z D C T  I J, 2 1 ) 
L D O T (  J r h M P X I = . 5 f ( Z f l C T (  J v N M A X I  ) t Z O U T  I J i h P A X )  
LI IOUT I J v 1 I 

1L k U 9 P A T I  7 E 1 6 . e )  

1331 I F  ( h P R l h l . F G . 3 I  G C  TU 5 1  

- 5  1 1 7 U C L T l  J I 1I + L i J O O T  ( J  9 2 1 f 
o L C O C T  ( J ,hCPX )=.!I* ( I C U U T  (J .h t 'AX1 )+ZDUUT I J, N Y A X )  

w K I T E ( 6 , 6 L 2 )  
6 3 2  k G d P A T I / / L F k  I h l T I b L  O I S P L A C C P E h T S  G I V t h / /  

1 4 X l b S , 8 X 4 t C  X 1 1 1 1 X 7 b U  T h L T A , l O X 4 H M  X I ,  1 4 X l H W / f  
K L d h T = C  
DC 6 0 3  I=l,hPPX 
I F  ( ( I . t ( J . l ) . C H . (  I.EQ.Z).UR.( 1.EQ.NMAX) f GO TO 604  
K U U h T = K C L h l +  1 
I F  ( K O L h T - F P E C )  b C 3 r 6 0 5 . 6 0 5  

b4K I T t (  6 9 6 C t  1 
bU> K W h T = C  

60b F G K M A T ( l X F e . 3 , 4 E 1 6 . 8 )  
603 L O N T I N L E  

604 E 5 S (  I I , P E E 1 1  9 3 9 I f  , P E E (  2 ~ 3 ~ 1 ) ~  P E E l 4 , 3 ,  I )  P E E (  3.31 I t 

P k I h T  L C O l  
L O U 1  F C K C A T  ( L H 1  / / * Z C C T + / / )  

K C U h T = C  
U L  3 d l O  I = l , h P P X  
I F  ( ( I  . F U . I I . C P . ( I . t P . 2 ) . G R . ~ I . € U . ~ M A X I )  GO TO 1004 
K C U h T = K C U h T  + 1 
I F  ( K U L h T - F Y E C )  3 C C O , l O C 5 , 1 0 C 5  

1003 K L U h T = O  
1034 P R I h T  1 C 0 7 ,  ( L L C T ( K , I I , K = l , ~ )  
1 .I0 7 FORMAT I 4E i C  . e ) 
3 0 0 ~  C C N T I N U €  

P K I N T  I C C H  
1006 F U K P A T  I / / /* Z C C f l T * / / l  

K 0 U F. T = C 
DU 7010 I = l r h P A X  
I F  ( I I . t O .  1 )  .CH.( 1.  t J - 2  1 .OK I.EO.NMAX) f G 3  TO 2 Q 0 4  

* 
* 
4: 
f 
* 
* * 
t 
0 
t 
4. 
f 
9 
f 
9 
* * 
* 
* 
9 
* 
* 
* 
* 
0 
0 
4: 
* * 
* 
* 
8 * 
4: 
* * 
* 
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APPENDIX D - Continued 

KOUNT=KQbhT+ l  
I F  (KOVNT-FREC J 2 O C O r  2 0 0 5 ~  2005 

2005 KCUNT=O 

2000 C O N T I N U E  

5 1  KOUNT=O 

2004 P R I N T  l C 0 7 r ( Z C D O T ( K r I  J r K = l r 4 )  

GO TO 6CG 

DO 33 I = l r h C b X  
IF((I.EQ.l).CA.(I-EP.NMAX)) GO TO 103 
PEE (49 31 I ) = X  ( 4  r I  1 
PEE ( 11391 J = X l 1  r I  
PEE(2.3.1 ) = X (  2.1 1 
PEE (3.3 r I  ) = X ( 3  r I  1 
GO TO 33 

14  

103 I F (  1-1 J lC4 .1C4 ,105  
104 K = 2  

J= 1 
GO TU 1C6  

105 K=NMAX 
J=NMAX 

106 P E E ( 4 r 3 r  J ) = - 5 * ( X (  4 r K ) + X ( 4 r K - l 1  J 
P EE ( 1 r 3 r J )= - 5 * ( X  ( 1 r K )  + X  ( 1 r K - 1 )  
P E E  ( 2  r 3 * J J=.5 * ( X ( 2 r K J + X  ( 2  9 K-1 )  1 
PEE (3.31 J )= .5 * (X (  3 r K ) + X ( 3 r K - l  J 1 

3 3  CONTINUE 
600 J S A V E = J T I C E * l  

I F  ( J S A V E  .GT .5 1 JSAVE=5 
GO TO ( 1 1 4 9 7 7 1  1C. 1 C C J  r JSAVE 

DO 200 J=1,4 
1 DO 2 0 0  K = l r N C b X  

200 ZSAVE( J r l . K ) = P E E ( J , 3 . K )  
GO TO 5 C 1  

DO 210 J = l r 4  

GO TO 501 

4 00 2 1 0  K = l r h C P ) l  

2 1 0  ZSAVE(  J r 2 r K l = P E E (  J r 3 1 K )  

7 7  DO 2 2  K = l r b C P N  
DO 2 2  J = l r 4  

2 2  .?SAVE( J 1 3 r l ) = F € E ( J r 3 r K )  

10 DO 23 K= l ,hCAX 
DG 2 3  J = l r 4  

23 ZSAVE( J r 4 r K ) = P E E (  Js3 .K )  

GO TO 5 0 1  

G O  TO 501 
100 DO 2 4  K = l r h P A X  

DO 2 4  J=1,4 
ZSAVE( J i l r K J = Z S A V E (  J r 2 r K )  
Z S A V E ( J I ~ . K ) = Z S A V E ( J ~ ~ ~ K I  
ZSAVE( J v 3 r K ) = Z S A V E ( J r 4 r K )  

24 ZSAVE(  J 7 4 r K ) = P E E (  J r 3 1 K )  
5 0 1  I F  (NPRIhT.EC.2) G O  T O  13 

NOPTS= (NCAX-2 ) / F R E Q + Z  
SMAX=DEL*FLCbT (hMbX-2 1 
WRITE ( 6 r53 1 S P A X  

I F  ( M O C ( J T 1 C E r K T H T I C E J  -NE.  01 GO T O  1003 

53 FORMAT ( / 9 H  SCbX/RB=E16.8)  
E -SS( l J=O.  
DO 20 1=2,hWbX 
DEM=DEL 
I F (  ( I - EQ -2  J -OR. ( I  .EC. NMbX 1 ) DEM=DtL/Z.  

2 0  E S S ( I ) =  ESS(I-l)+DEC /SPAX 
601 W R I T E ( 6 . 2 )  
2 F O R M A T ( / 4 X l b S p B X 4 k h  X I r 1 1 X 7 H N  T H E T A r l O X 4 H N  X T r 1 2 X 4 H Q  X I r 1 2 X 4 H F I  X I .  

l l l X 7 H M  THETA/ )  
KOUkT=C 
DO 3 I = l r N H b X  
I F ( ( I ~ E P ~ l J ~ C R ~ ( I . E C . 2 ~ ~ 0 R ~ l I ~ E ~ . N M A X ) )  GO TO 1 7  

* * 
* 
* 
* 

* * * 
* * * * * * * * * * 
4 
* 
* * * * * * * * * * * * 
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KOUhT=KCLI \  1 +  1 
I F ( K U U N l - F R E Q )  3 r 1 8 . 1 8  

WR I T E (  6 9 7  J 
1# KOUhrT=C 
1 7  E S S (  1 J 9 PEE ( 1.2, I J 9 PEE(  Z r  11 I ) r PEE ( 2 9 2 .  I J 9 P E E ( 3 r  2. I J 9 

l P E E  ( 4 9  39 I 1 * P E E  (1 r 1 9  I J 
7 ~ O R ~ A T ( 1 X F C - 3 r 6 E 1 6 . 8 )  
3 C O N T I N U E  

YR I T E  ( 6 9 2  C 1 ). 
201 F U R M A 7 ( / 4 X l h S r B X 4 H M  X T t l 2 X 4 H U  X I r l l X T H U  T H E T A r 1 2 X l H W r  1 2 X 6 H P H I  X I / )  

KUUNT=O 
DO 2 0 2  I = l r h f r P X  
I F  
KUUNT-KCUhT + 1  

( ( I .EQ - 1  J . CR. ( I .  EO.  2 J .OK.  ( I .  EO. NHAX ) J GO T O  203 

I F  ( K O L N T - F P E C J  2 0 2 r 2 0 4 1 2 0 4  
204 KOUNT=C 
2 0 3  W K I  T E (  6 . 2 0 5  J 

2 0 5  

F S S (  I J r P E E ( 3 r l r  I ) .PEE( 1.39 I J r P E E ( Z r 3 r  I J r P E E ( 3 r 3 r I  Jr 
l P E f ( 4 r 2 r I )  

FGRMAT ( 1 x 6 6  - 3 r 5 E 1 6  - 8  J 
2 0 2  C O N T I N U E  

1003 C O N T I N U €  
500 M=O 

J J ( 1 1  = I  
J J ( 2 )  = L  
J J ( 3 )  =2  
J J ( 4 )  =3 
J J ( 5 )  = 4  
J J ( 6 )  = I  
J J ( 7 1  = 3  
J J ( 8 )  = 1  
J J ( 9 )  = 2  
JJ (  10) = 3  
J J (  1 1 ) = 4  
K K ( 1 )  - 2  
K K ( 2 1  =1  
K K ( 3 )  = 2  
K K t 4 1  = 2  
K K ( 5 )  = 3  
K K ( b 1  = 1  
K K ( 7 )  = 1  
K K ( 8 1  = 3  
K K 1 9 )  = 3  
K K (  10) = 3  
K K (  11 1=2  
K K K = 1 1  
OC 5 0  L = L t l ( k K  
J=J J ( L  1 
K=KK ( L 1 
KOUNT=O 
U G  19 I = l , h P P X  
H= I 
IF((I.€O.l).CR.(I.EU.2)1 G G  TO 19 
M= ( AMAX-2 ) / F R  E Et2 
I F ( I . t U . h C P X J  GC T O  19 
K C U k T = K C U h l  t 1  
I F  ( K O U h T - F R E C  J 1 9 . 2 1 , 2 1  

M = ( I - Z ) / F R E C + Z  
19 Y O R D I M ) = P E E I J r K r I  J 

N1= (NMAX-2  ) / F P E C + Z  

DO LO2 1 = 1 r h 1  

L A L L  K E C O U T ( 1 4 r  I r  C t  ABCJ 

2 1  KCUNT=O 

1 0 1 .  F U R P A T  ( 5 E l i . 5 , 4 X 2 1 4 )  

A B C = Y C R O ( I l  

1 0 2  C O N T I N U E  
5 0  C O N T I N L E  
13 RETURN 

t hro 

* * 

* * 
* 

I 
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APPENDIX D - Continued 

S U B R O U T I N E  E F G I K ~ ~ ~ D S I N P A X )  
C SUBROUTINE EFG T k I S  SUBROUTINE C A L C U L A T E S  T H t  E L E M E N T S  OF THE E t F t A l U D  G 
C M A T R I C E S P A S  D E F I N E D  I N  A P P E h D I X  A OF REFERENCE ( l ) , A T  THE S T A T I O N  S P E C I F I E D  
C BY THE I N D E X  K.  

COMMON 
l / B L l / R ~ 1 C 2 I r G b ~ l 1 0 2 ~ ~ O C T ( l C Z ~ ~ O M X I ~ l O Z ~ ~ ~ t O M X ~ l O 2 I  
Z/BLZ/E14,4).G(4,4).F(4r4) 
3/BL 3 / N U  .L P C h 9 EAL S I C- 9 C k  AR D E L  

R E A L  N U p L b W r h r L A M Z  , 

C A L L  D D B l K ~ C t L ~ ~ U ~ B . D B , D ~ D D )  
E l  l r l ) = R  
E ( l r Z ) = O .  
E t 1  *3)=C- 
E l  l r 4 ) = 0 .  
E ( Z . l ) = C .  
D1=(  l . -kU)  
LAM2= LA P* * Z  
R A = R ( K )  
GA=GAM I K I 
O X = C M X I ( K l  
OT=OHT ( K )  
DEX=DECCX I K  1 
GA2=GA**Z 
RkX=(3 . *0T-CX 1 
R X E = l 3 . * C X - C T )  
OTX=OT*OX 
D N L H = L b r Z * C * h * E 1 / ( 2 . * R A )  
DUNLR=OhLR*CD/D 
E ( 2 ,2 ) = R *  C 1 / 2. +LAMZ*D *U 1 *R E X **2 / 8. 
t l Z 1 3 ) = D h L P * R E X  

k ( 3 , l ) = C .  

KAN= l N / P A  )**2 
E (3 .3 1 = L A  C Z * C * O  l* I 2  .*RPh+ I 1. +NU ) * G A 2  1 

t ( Z 1 4 ) = C .  

E ( 3 r Z ) = E I 2  9 3 )  

E ( 3  r 4 ) = L A P 2  
E 14. 1 ) = C  - 
E (4.2 ) = C -  
E ( 4 r  3 1 e - O  
E 14 .4  )=C.  
F (  l r l ) = G P * R + G B  
F l l r 2 ) = (  1 . + h U ) * @ * N /  ( 2  . * R A ) + C h L R * R t X * K X E / 4 .  
F ( 1.3 1 =H* ( C X i L I J * O T  )+LAMZ*L)*C 1*( I 1 .+NU *GAZ*OX+RAN*R XE /2.) 
Ff 1 . 4 ) = L A F 2 * C X  ~. - 
F 12,l)=-f ( 1.2 1 
F (2.2 = ( C  1 /2.) * I  GP*E!+OB 1- I LAMZ*D*D l *RE X / 8 .  *12 .  *DEX-GA*( 5. * G X  

1 - 3 . * O T J ) + L b M 2 * C D * D l * R E X * * 2 / 8 .  
F ~ 2 ~ 3 ) = D h L P * l 2 . * ( 1 . + N U ) * G A * O T - ~ E X + 3 . ~ G A * l ~ X - O T ~  )+DDNLR*REX 
F ( 2  r4 )=0 .  
F l 3 r l ) = - F (  1 . 3 )  
F I 3  9 2  1 = D A L  P *  ( 3 .*GA*OX-GA*OT* I 5. +2. *NU )-DE X )  +DDNLR*REX 
F ( 3  93 ) = - L A C 2 * D + D 1 *  I ( 1  .+NU) * I  Z . * G A * O X * O T + G A * * 3 ) + 2 . * G A * R A N )  

F 1 3  141 = L A P 2 * G b * l 2  . -kU)  
F ( 4 9  1 ) = D * C Y  ' 

F 1 4 , 2 ) = 0 .  
F ( 4 9 3 )  =-D* hIJ*GA 
F ( 4 , 4  )=C. 
G (  1.1 = h U * C B * C P - ~ U * R * U T X - B ~ G A Z - D l * B * ~ A A / 2 . - L A M 2 * D * U l * l (  l . +NU)+GA2*  

G I  1 9 2 )  =NU*h*C l? /RP-  l 3 . - N U ) /  I Z. *RPI *GA*B*N-DNLH*Z  .*GA*( REX*RXE/@.  

G ( l  p3 ) = B * l  CEX+GP*(CX-OT)  )+DB*IOX+NU*OT)-LAH2*D*Dl*GA*RAN*( RXE/Z.+(  

I + L A M 2 * C L * C l * l  I l . +NU)*GA2+2 .+RAN)  

l O X * * Z + R X E l * Z * R b N / @ . I  

1+1  l . + N U ) * O T X )  

11 .+hU)  *CX 
G (  l r 4 ) = L A P Z * D l * G A * O X  
G (  2 9 1  1 = - t l + E P *  F *  13 .-hU) / 12. * R b ) - C l * N * D B  / ( 2. * R  A I +DNLR *2. *I- 1 * ( 1 .+ 

l N U ) * G A * O T X + G P / @ . * ( 6 . ~ O T X - 7 . * O X * * 2 - 3 . * U T * * 2 ~ - O E X / 4 . * ~ 5 . * ~ T - 3 ~ * C X ~  
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APPENDIX D - Continued 

2- O U h L  K /4 . *  P E x * R  x E 

l - U T X / R  - * K E > * * 2  J 

l * K A N + d I i X * ( G A 2 t C T X ) ) - D D N L d * R E X * G A  

G ( L ~ 2 l ~ ~ G P * F ~ 2 ~ Z l + C l / ~ ~ * H * O T X ~ ~ + R A N ~ L A ~ 2 * O * D l * ~ ~ l - + ~ U ~ * O T * * Z * R A N  

b ( ~ , 3 ) = - ~ * L + ( C 7 t N ~ * C X l / P A + D N L R * ~ ~ A * O E X - 2 ~ * G A 2 * 0 X ~ 2 ~ * ( 1 ~ t N U ~ * O T  

6( 2 ,4 )=-NU*LAPZ*OT*N/KA 
(;(3,1) = - 8 * C P + ( C T + h U $ O X l + L A M 2 + C * D l *  (GA*(  l .+NUl+(-GA*DEX+GA2*OX 

l - - U X * I I A N t 2  . +CT W O X  )+PAN/2.  *( GA*OX-GA*OT-3.*DEX I 1  
2-LAb '2+CC*C l+ (  ( l . + h U ) * G A 2 * t i X + R A N / 2 . * R X E l  

l ~ 0 T - O T ~ K A N ~ + G A ~ C E X t 3 . + G A Z * o + O T X * R E X ~ - D D N L R * ~ 2 . * ~ l . + N U l * ~ A  
ti( j,Z)=-H*h*( C T t N U * 0 X l / R A + D h L R * ~ 2 ~ ~ ~ l ~ + ~ U l * ~ C T X * O T ~ G A Z * O X + Z . * G A 2  

Z*CT+GA*RCX 1 
6 ( 3 , 3 ) = - 8 2 ( C X P + 2 t 2 . 9 N U * U T X + O T + * Z ) + L A M Z * U * O L * ~ A N * ( ( L . + N U J * ~ O T X - R A N  

G ( 3.4 J =-LAP 2 *  ( C l * C l  X+NU*KAN I 
~ ( 4 , 1 ) = C * ( C E r i h U * ~ P t O X I  
b ( 4 , 2 J = C + h L * h * C T / K A  
G ( 4 . 3 )  = C * h L * R A h  
G (  4 . 4 )  =-1. 
R E T U K N  
L h0 

1 + 2 . t G A 2 ~ + 2 . * ~ G P 2 t @ T X 1 1 - L A M 2 * G D * D l * K A N * ~ ~ . + N U 1 * G A  

sULI I ( t )UTlhE F C H C t ( K t I N 0 5 r N M A X l  
C S t J u K U U T I h E  kUHCT T b I S  SUHROJTINE C A L C U L P T E S  THE E L E M E N T S  OF T H E  LOWER C A S E  
C E - V E C T _ ) E  A S  ' I t F I h E C  I h  A P P E h D I X  A Uf- K E F t H E N C E ( 1 ) v A T  THE S T A T I O N  S P E C l f l E O  
c 6 Y  T k L  IhUUEX K .  

L C V ~ G I U  
L / H L  l / K  ( 1C2 I v G P C I  1 CZ ) t  S P T (  1 C7 1 P O P X I  ( 102 I ,OEGMX( 102 I 
3 / B L  3 / N U , L P P 7 h  V E A L  S I G I  CHAR, U t  L 
4 / B L 4 / C E E ( 4 )  

R E A L  N U , L A P i h , L 2  
K t A L  M S l P  
R A = R ( K )  
GA=GAM ( K  
JX=CMX 1 ( K  I 
U r = C M T  ( K )  
T z T E M P  ( K t C t L I 
U T = C T C C P ( K . C € L )  
U f L T l = D E L l  ( K ,  C k L  J 
D C T l = U O E L l ( K , C € L l  
P X l = P X ( C , L F L I  
P i 1  =PT ( L ,  c t L I 
P l = P ( K )  
H = H H T (  K r C E L  J 
U h = C H h T  ( K  , C t L  
H K J = H K P ( K , L F L  I 
U h K B = O H H P ( E . C E L )  
D1=  1 .-hU 
L Z = L A M * * L  
t A L = t A L S  I G  
T S U d l = 2 . * k * C A L / (  Ol*kRH 1 * T  
N S T  P = C H P H *  E t L /  (3.  * E 1  J * I ( 1 -  5/HRB-3.  / H K B * * 2 + 2 .  /HRB**3 1 * I  D L T l  * P * * 3 t 3 .  

C t E  (4) = L ~ P R * t P L + O E L T l * h + * 3 /  (3.*ClI * (  1.5/HKD-3./HRE**Z+Z./HRE**3) 
L E E ( l ) = - P X l t 2 . ~ E A L / ( ~ l * H ~ H ) * ( H * C T t T * D H l - D H R ~ / H R E * T S U E T -  

C t E ( 2 )  = - P T  l - h / l c A *  1 S C i r T - L Z * D l  * N / R A * O T * C E E  ( 4 1  
C k E ( 3 1 =- P 1 - ( C. X +O T I f T S  U R T- L 2 x 0  1*GA * M ST P t 

1 * H * * 2 + C b * U t L T  11 t D F L  T l ~ H * * 3 * D ~ R B / H K B * * 2 * ( - 1 -  5+6.  /HRE-6. /HRB**2  I ]  

l L 2 * D l * G P * C X + C f E ( 4  1 

A L 2 * C l * C f  L ( 4  1 * (CX*UT-  ( N / K A  I +*2 I 
K E  T URN 
t h D  
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S U B R O U T I N E  A e C G  ( K )  
C SUBROUT I N €  A E C E - -  T P I S  S U B R G U T I N E  C A L C U L A T E S  T H E  A n O t C t  A N 0  LONER 
C C A S t  G M A T R I C E :  U S I N G  THE CURRENT V A L U E S  OF THE E t F t G t  A N 0  LCWEK C A S E  
C E M A T R I C k S .  

COMMCIN 
2 / 8 L 2 / E  ( 4 9 4 ) . E ( 4 ~ 4 ) r F (  4 . 4 )  
~ / B L j / ~ U . L A F i h . E A L S I ~ r C ~ A R r O k L  
4 / B L 4 / C E E (  4 I 
6 / B L 6 / A  ( 4 , 4  1 . e (4 .4 1 * C (  4 9 4 t S C A G I  4 I 
9 / B L 9 / D l 4  9 4 )  9 Z C O T ( 4 . 1 0 2  
A/ B L  10/ J T  IF! E 
B / B L l l / L S A V € ( 4  1 4 r 1 0 2 )  

rZDDCT I 4 1 1 0 2  1 9  EPS 

D I M E N S I C l v  T E R P ( 4 1  
R t A L  N ~ R U I L P C  
02=2. / D E L  
U 4 = 4  . / D E L  
U X = Z . + U t L  
D O l I = l t 4  
SMAG( I l = C X * C E E  ( I  I 
D O 1  J = l , 4  
B ( I ~ J ) = - D 4 * E I I ~ J ) + C X * G ( I , J )  
C l  I r J )  = C 2 * E  ( I  e J l - F (  1 ,  J )  

1 A ( I . J ) = C 2 * E ( I r J ) + F ( I r J I  
JJ= JT I WE+ 1 
I F  ( J J . G T . 5 1  J J = 5  
G O  TO ( L v 3 9 4 9 5 9 6 ) t  JJ 

3 DO 14 J z 1 . 4  
TERM(  J )  =-6 .*Z SAVE ( J  11 r K  1-6- *EPS*ZDUT(  J r K 1-2. * t P S * * 2 * Z  000 f ( J r  K 1 
DO 1 5  1 ~ 1 9 4  
SUY=O.  c 
DO 2 5  J z l . 4  

1 4  

25 S L M = S U C + U (  1 .  J ) * T E R C ( J )  
1 5  SMAG( 1 ) = S C P C (  I ) + S U C * i l X / k P S * * 2  

DO 16 1 ~ 1 ~ 4  
DO 16 J = l r 4  
61 I t  J l = P I  I t  J ) -6 . *UX*U(  I r J  1 / E P S * * 2  l b  

2 RETURN 
4 00 17 J = l r 4  

TERM( J l = - 4  . * Z  S P \ E  ( J  r l r  K )+2 .  * Z S A V E l  Jr  1 r K ) - E P S * * Z * L D D O T  ( J r  K )  
DO 1 8  I = 1 . 4  

DO 2 6  J = l r 4  

1 7  

SUM=O. 0 

Lo S L M = S U r + U ( I r J ) * T E R ~ ( J )  
1J S M A G I  I I = S P b G (  I l + S L P * O X / E P S * * P  

GG T O  1s 
5 DO 2 0  J = 1 r 4  

TERM( J 1 x - S  . *ZSPVE ( J  r 3  9 K I + 4 .  * Z S A V E (  J.2, K I - Z S A V t  ( Jr  1, K I 
DO 2 1  1 ~ 1 9 4  

DO 2 7  J z 1 . 4  
SLC=SUC+O ( I *  J l + T E P P  ( J  1 

2 0  

SUM=O. C 

2 7  
2 1  SMAGI I ) = S C P C (  I ) + S L P * O X / E P S * * 2  

GO TU 19 
b DO 2 2  J = l r 4  

DG 2 3  I = l r 4  

DO 2 8  J = l r 4  

2 L  T E R M l J ) = - 5 . * Z S P V E ( J r 4 r K ) + 4 . * Z S A V E l J r 3 r K ~ - Z S A V E ( J t 2 r K )  

SUM=O. C 

2 6  S C M = S U C + D l  I . J ) * T E R C ( J )  
2 3  S M A G ( 1  ) = S P b C (  I l + S U P * D X / E P S * * 2  
I Y  DC 2 4  I = l r 4  

DO 2 4  J ~ 1 . 4  
24 8 ( I  r J l = @ (  I r J l - 2 . * C X * D ( I r J l / t P S ~ * 2  

K E T U R N  
€ND 
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S L t 3 K U U T I h t  I & I T  ( I h C 5 i B C U N O H Y )  
C C A L C U L A T I G h  OF TI-E P - ' 4ATRIX  AND THE X-VECTOR AT THE F I R S T  STATION.  

I N T C G E H  B C L h C R Y  
C C Y C UN 

2 / 3 L 2 / E  ( 4 . 4 )  r G  I 4 1 4  1 r F l 4 1 4 )  
j / B L 3 / N L  ,LAC.N.EALSIGqCHAK 
4 / I J L 4 / C E t  ( 4  1 
5 / B L 5 / H l 4 i 4  J , F F  ( 4 1  r J P Y  ( 4 1 4  
6 / a L S / A  I 4  1 4  ) VI? I 4 1 4  1 r C 1 4 1 4 )  

/ t % L 7 / P E f  ( 4 . 4 . 1 C 2 )  + x 1 4 , 1 0 2  
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APPENDIX D - Continued 

SUBKUUTINE P P A C X ( K I  
C SUt ikCIbTINE PANCX T h I S  SUBRCUTINE CALCULATES THE P MATRIX  AND THE X-VECTOR 
C AT THE S T A T I U N  S P E C I F I E C  t3Y THE INDEX K U S I N G  EOUATION ( 2 9 )  OF: THE TEXT. 

CCMMGN 
b / U L 6 / A  (4.4 1 ,e ( 4  9 4  J t C (  4 r 4 )  t S P A G (  4 1  
7 / B L 7 / P E E ( 4 r 4 r  L C 2 l . X ( 4 1 1 C L I  
0 I M€NS I C N P  1 ( 4  t 4 I t I P I V O T  (41  , I N O t X ( 4  v2 1 9 X 1 ( 4  I p X2 ( 4 
DO 1 I = l r 4  
UO 1 J = l r 4  
sun=o. 
D C  2 L = l r 4  
SLMZSUMtC ( I . L ) * P E E (  LI J 

C A L L M A T I N V ~ ~ l r 4 ~ X 2 ~ O 1 D E T E R H 1 I P I V O T ~ I P I V O T ~ I N O E X ~ 4 ~ I S C A L E ~  
DiJ 4 1=1,4 
SUM=O. 
DO 3 J = l r 4  
SbM=SUM+C ( 1  r J ) * X (  J v K - 1 1  

Ocl 5 I = l . 4  
OC 5 J = 1 , 4  
SUM=O. 
DC 6 L = 1 , 4  

L 
A P l ( I r J ) = B ( I , J I - S U M  

K-1  I 

3 
4 X 1 (  I)=SPAG( I1-SI.M 

o S U Y = S U P t P l  ( 1  , L I * A ( L , J l  
5 P t E ( I . J , K I = S U P  

UO 7 1=1 ,4  
sUM=O. 
D@ 8 J = 1 , 4  

7 X ( I , K ) = S b M  
b ~ L ~ = S U C t P l ( I , J ) * X l ( J )  

R E T U R N  
L N D  

SUHKOUTINE E 6 7 3 ( K I  
C SUdKUUTINE € C 7 3  THIS SUBROUT 
C T H E  S T A T I l J h ( K ) , G I V E h  T i - €  SOLUT 

I / U L 7 / P € E ( 4 , 4 , 1 C 2 )  , X ( 4 , 1 0 2 )  
c l:M NUN 

D I i 4 t N S l C h  L ( 4 ~ 1 0 2 I  
t U U I V A L k h L E  ( X ( 1 ,  
I10 1 1 = 1 , 4  
SUM=U. 
OU 2 J z 1 . 4  

2 SUM=SUPtPEt  ( 1 .  J,K 
1 Z (  I . K ) = X (  I , K l - S L M  

k E  TUKN 
€ND 

NE CALCULATES THE SOLUTION VECTOR AT 
CN A T  K+1. 
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APPENDIX D - Continued 

S U B K O U T I N E  F I h P L  (!PAX* I N D 5 t B O U N D K Y )  
C C A L C U L A T I O h  GF S O L U T I O N  VECTCR A S S O C I A T E D  W I T H  L A S T  S T A T I O N  

, I N T E G € R  c)ClJh.CPY 
COMMON 

3 / B L 3 / k U  * L A P  t hr  EAL S IG, CHAKr  D E L  
5 / B L 5 / H  ( 4 - 4  1 r F F  ( 4 )  t JAY ( 4 ~ 4 )  
7 / 8 L 7 / P E E ( 4 , 4 , 1 C 2 )  . x ( 4 , 1 C 2 ~  
L) I KENS I ON 
D I M E N S I C &  I P I V C T ( 4 ) t f N D E X ( 4 , 2 ) r A 1 ( 4 r 4 )  t A 2 ( 4 1 4 l r A 3 ( 4 r 4 I r P S I ( 4 r 4 ) r  

R E A L  J A Y t h r h U t L A P  
NAMELIST/LAST/C~EGLtCAPLLIELLtELL 

CPEGL (4  r 4  I t  C APLL  ( 4 t 4 1 9 t L L  ( 4  ) 

l G M ( 4 9 4  1 r E T P ( 4  ) r B ( 4 1 4 )  

90 I F  ( I N 0 5 1  13 r13110  
10 I F  ( I N D 5 - 2 )  1 3 t 1 1 t 1 1  
11 C A L L  P C L E  ( h r C E L t P S I t G M I  

I F  ( B U L h C R Y . E C . 1 )  GC T C  16 
W R I T E (  6 1 1 7 C )  

HR I T E (  6 9 4 C  ) 
1 7 0  F U R H A T ( / 3 0 b  ECLhDARY C U N O I T I O N S  AT S=SMAXJ 

40 F O R M A T ( 3 8 t  C C h C I T I f l N S  FOH A SHELL  POLE GENERATED)  

1 3  I F  (BUbNCRV.EC.11 GO TU 70  
tic TO 1 6  

DO 41 I = l r 4  
E L L ( 1  )=O.O 
DO 41  J z l . 4  
OMEGL(  I r J ) = O . C  

41  C A P L L (  I t J  1 z C . C  
READ ( S t L A S T )  

15 W R I T E ( 6 r 1 7 C )  
WK I T € (  6 . 1 6 7  1 

DO 1 7 1  I = l r 4  
W R I T E (  C 1 1 6 5  ICCEGL ( I  7 1  1 r C M E G L (  I t Z I r O M t G L (  I13 1 r C M E G L (  I r 4 )  1 

1 C A P L L ( I r l ) r C A P L L ( I t 2 ) T C A P L L ( I r 3 ) ~ C A P L L ( I t 4 ~ ~  
2 E L L ( I )  

167 FURMAT ( 2 1 t S k C C E G A , 4 9 X 5 H L A M C A t 3 4 X 3 H E L L /  1 

1 7 1  

1 6 Y  f C H C A T ( 4 E l i . 4 r 2 ( 6 X 4 € 1 2 . 4 ) )  
7 0  DO 1 I l l 9 4  

DU 1 J = l t 4  
A l (  I t  J ) = J A Y  ( I t  J ) / 2 . + H  ( I r J )  / D E L  
A Z (  I t  J ) = J A Y  ( I t  J ) /  2.-H( I r J )  / D E L  
oc 2 1 5 1 1 4  
OU 2 J z 1 . 4  
S Z = C .  
5 3 = 0 .  
O h  3 L 1 1 . 4  
SZ=UMEGL(  I t L ) * A 1 6 L 1 J I + S Z  
S 3 = U M E G L (  I r L )  * A 2 ( L  1 J ) + S 3  
P S I  ( 1  t J ) = S ? + C A P L L  ( 1 ,  J )  1 2 .  

L GM( I , J ) = S 2 t C A P L L (  I t J ) / Z .  

1 

3 

1 6  DC 4 I = l r 4  
DO 4 J = l t 4  
s 1 = 0 .  
00 5 L = l r 4  

5 S l = S l + P S  I ( 1 - 1  *PEE (11 J 9 AMAX-1 
4 B ( I r J I = G M ( I r J ) - S l  

DO 6 1 ~ 1 9 4  
s 1 = 0 .  
s2=0. 
DO 7 J = 1 t 4  
S l = S l + P S I  ( I r J ) + X ( J t h M A X - l )  

7 S Z = S Z + G C t C L  ( I t J ) * F F ( J )  
6 E T A (  I ) = t L L ( I  1 - 5 1 - 5 2  

C A L L  
00 1 2  I = l r 4  

M A T I N V  ( e  r 4 r  F T A t l  r DETERMt  I Q I V O T t  I N O E X t 4  t I S C A L E )  

12 X ( I  , N M A X ) = E l A ( I )  
K E T U R N  
Eh.0 
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APPENDIX D - Continued 

SUl3KOUT IN€ S T R F S S  ( F H E Y I ~ M A X ,  I hD5 I 
C SLJBAOUTINE S T R € S S - -  T H I S  S U O H O U T I N E  C A L C U L A T E S  THE SECONDARY Q U A N T I T I E S  
C N X I ,  N X I  THETA, Q X I ,  P H I ,  I4 THETA, M X I  THETA, M X I  THETA,  AND 
C N TI-ETA A T  E A C I -  S T A T I O N  ALONG THE SHELL .  

COMPUN 
l / S L  1 / K  1 IC21 , G P t ’ (  1C2 1,0MT(lOZ I r U M X I  ( 1 0 2 1  ,DECMX( 1 0 2 1  
3 / t3 L 3 / N U 9 L P C 
5 / B L  5 / H  ( 4  94 I v F F  ( 4  1 v JAY ( 4 94 I 
7/BL7/  PEE (4 4 v 1 C2 j ,  X (49 IC2 I 
d / R L B / A K  ( 3  94 I .PLL  ( 3  941 t S T H E K ( 3 1  

h t E b L S I E v C HA R t C E L 

U IMENS IClv  
t QU I V A L  E h C  E 
I N T E G E R  FKEG 
K E A L  N t h U ,  J b Y t  L A M  
KCUF\T=O 
DO 9 I = l , h P b X  
I F ( 1 I . E C .  1 I .  C P .  1 I - E6 .NC PX I 1 
I F ( 1 - 2 1  1 3 , 1 3 1 1 4  

1 I- ( K C U h  1-F R E  0 I Y 9 12  9 12 

2 (4, 1C2 I s Y ( 4  I r i I2  ( 4  I 
( Z ( l , l l , X ( l r l l l  

GO TO 1 

14 K U U h T = K C U h l + l  

1L KUUNT=C 
1 3  DC 3 L - 1 . 4  

Y 1 L l = Z  ( L , I I 
UL I L I =  ( 2  I L , I +  1 1-2 ( L ,  I -  1 1  I / ?  . / D E L  
GU TO 2 

3 

A I I - 1  1-1 ) 4 , 4 , 5  
4 K=2 

5 K=NPAX 
GIJ T O  6 

4 D O  1 1  L z 1 . 4  
Y ( L  l= .5* (  Z ( L v C  l + Z  ( L , K - 1  1 1  

A 1  ~ L ( L ) = ( Z ( L T K ) - L ( L T K - ~ I ) / O € L  
2 L A L L  H f i J ( I , I h C 5 , N M A X , l . )  

C A L L  K L T I  1 ~ l h C 5 , N P b X )  
D O  7 L = 1 , 4  
su?l1=0. 
su412=0. 
D U Y C =  1 .4  
5 U M l = S L J C l +  b ( L , V l * D Z ( Y l  

u 5 U Y L = S L C 2 +  J b t l  1, C 1 * Y (  P )  
7 P E t  ( L . 2 . 1  ) = S l i C I + S b M 2 + F F ( L l  

uo 9 L = l , 3  
SUM 3=U. 
su‘*14=c. 
011 10 P = l , 4  
S L ~ 3 = S L C 3 + P C ( L , F ) t C L ( M )  

P t E ( L , l , I I = S U F 3 + S U V 4 + S T ~ € ~ ( L )  
10 S U M 4 = S b P 4 + P L L  ( L  ,M ) * Y ( M I  

9 CUi \ IT INCI -  
K E T U H ~  
tF\0 
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APPENDIX D - Continued 

S U B R O U T I N E  K L T I K ,  I h D 5 r N M A X l  
C S U 6 R O U T I N E  K L T  T P I S  S U B R E U T I h E  C A L C U L A T E S  T H E  E L E Y E N T S  O F  T H E  M A T R I C E S  
C W H I C H  ALLOW T k E  C P L C U L A T I O N  (IF THE G U A N T I T I E S  H-THETApN-THETA,AND M - X I  THETA 
C A T  

2 

1 

8 

3 

6 

T H E  S T A T I C h  S P E C I F I E C  BY T H E  I N O E X  K.  
COMMON 
1 / B L 1 / K ~ 1 0 2 ~ ~ G P ~ ~ l C 2 ~ ~ O M T ~ l ~ 2 ~ ~ O M X I  (1021  r D E O M X I l 0 2 )  
3 / B L 3 / N U  ,LAM ~NIEALSIGVCHAKI D E L  
8 / 8 L B / A K ( 3  14) v P L L (  314) r S T H E R ( 3 )  

R E A L  N U I L A C ~ A  
C A L L  
D l = D * (  1 .-hU 1 
02=D*( 1 .-h;l.**2 1 
OX=OMX I ( K  1 
E A L = E A L S I  G 

BOB[ K .DEL r N U  9 B rDR 9 D t  DD ) 

H Z H H T  ( K 1 0 E L 
H R B z H R P  16, C E L  1 
T E M P E K = T E C F  I K r C E L  1 
D E L T A T =  CE L T  ( K  t CEL 
S T H t K  ( 1 l = - C f P R * E A L * C E L T P T  

S T H E K l 2 ) = - 2 . * f * E A L * T E M P E R  / ( ( l . - N U ) * H R B )  

I F l I N D 5 ) 1 , l r 2  
I F ( ( ( I h C 5 - 2 ) . L € . O ) , b N C . ( K - E ~ - 1 ) )  GO TO e 
I F I I I  I N 0 5 - 2 l . G T . O ) . A ~ D . ~ K . E O . N H n X ) )  GO T O  8 
RA=R I K 1 
GA=GAM(K)  
O T = O M T ( K )  
KEX=3. + C T - C X  
RXE=3.  * E X - C T  
RAN=N/ R b  
RAN2=R b k * * 2  
A K I  1.1 ) = O .  
A K (  112 ) = O -  
A K (  1 9 3  J=-GP*C2 
A K I  1,4)=0. 
A K (  2 ?  1 ) = B * h L  

*H**3* (  l./( 2 .*HRB ) - l . /HRH**Z  
1+2. / (  3. *HR e**  3 J 

STHER(  3 ) = C .  

A K I  212 )=O. 
A K l L v 3 l = C -  
A K (  214 ) = O m  
A K l 3 . 1  ) = O .  
A K I  3.2 ) = U l * R E X / 4 .  
A K I  3.3 1 = H A P * C l  

A L L (  l 1 1 1 = G P * C X * C Z  
A L L 1  L 1 2 ) = D 2 * R b h * 0 T  

A K I  3 r 4 ) = C .  

A L L  t 11 3 ) = C 2 * R b h 2  
A L L ( l r 4  ) = h L  
A L L  1 2 1 1  )=B*GA 
A L L  1 2 , 2  ) = B * R b h  
A L L  1 2 , 3  ) = B * l C T + h U * C X )  
A L L  ( 2 1 4  )=C. 
A L L ( 3 1 1  ) = - C l t F P h * F X E / 4 .  
A L L  ( 3 1  2 ) = - C - P * C  1*R E X / 4 .  . 
A L L ( 3 , 3 ) = - E P * R P h * C L  
A L L  ( 3 1  4 ) = C .  
GO TO 6 
DO 3 1 = 1 , 3  
DO 3 J=114 
A K (  I . J )=O.  
A L L 1  1 ,  J ) = C .  
C 1= (lu**2/2 .- 1.) / ( 1. +NU-N+*Z*NU/ 2. ) 
A K (  1, l)  =D2*CX*  ( ( 1  . + h U )  *C1+1.  ) 
A K (  1.2 ) = D Z * C X + N * ( N U * C l + l . )  
A L L 1 1 ~ 4 ) = ~ ~ ~ - 1 1 . - h U * ~ 2 ~ * C l J  
A K l Z 1 1 ) - 8 * ( l . + h U )  
A K (  2.2 ) = B * h  
A L L  1 2  1 3 I=@+ (1 .+hU ) *CX 
C 2 = 2 . + 2 . * h l - N L * h * * 2  
AK(3,1)=Dl*h*(I./CZ-UX/2.) 
A L L  1 3 1 4  ) = - h *  ( 1 .-NU ) /C 2 
RETURN 
EhD 
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APPENDIX D - Continued 

5 U R H O U T I N E  B C B ( ~ ~ O E L ~ N U I E ~ O B ~ O ~ O O )  
C SURRUUT INE Bee-- TPIS SUBROUTINE C A L C U L A T E S  THE BENDING STIFFNESS 
C , U t  T H E  MEFBRAhE S T I F F N E S S t H v  AND THE O t R I V A T I V E S  U F  0 A N 0  B t O O  A N 0  
C UBt  R t S P E C T I V E L Y ,  FOR A S H E L L  COHPUSEO CF A CORE H A V I N G  NO S T I F F N E S S  
C AND TWO S Y P I E T R I C A L  CUVER P L A T E S  

R E A L  N L t h t l b b '  
H K R = h K b  ( K t E E L  ) 
UHKO=DHRP ( C 9 C E  L 1 
H = H h T (  K 10 E l  
DH=OHHT ( K  ,EEL I 
U Z = l . - h U * * 2  
B = L . * H / ( C 2 * H R @ )  
U = H + * 3 * ( 3  ./ (Z.*hRE ) -3 . / I -K6* *2+2  . / H R B * * 3 ) / ( 0 2 * 3 . )  
tiE=2.*CI-/ ( C 2 * b R 6 ) -  B*CHRB/HRB 
00=3 .* C I-*U /I- iI- * * 3  *OHR E /  (02 +HRB**2 1 * (-. 5+2. /HRE- 2. /HR E+*2 ) 
DD=OU/3. 
I iETURN 
EhO 

C 
C 
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APPENDIX D - Continued 

S U B R O U T I N E  I N P U T  (NWAXv I N D 6 J  
COMMON 

1 / D L  1 / R  ( 1 0 2  J v G P P ( l C 2 J 9 0 M T I  1 C 2  J v U M X I  ( 102 J vDEOMX( 1 C 2 J  
3 /BL 3 /NU 9 L A P  I h' v E A L S  I GI CHAR v D E L  
9 / B L ¶ / D ( 4 . 4 1  ZCCT(  4.102) ~ Z D D O T ( 4 , l O Z J v E P S  
6 /BL 14/ 40. T I r  9 CPS 

R E A L  NvhU.LAP 
P I=3 .14  1 5 5 2 6 5 3 5 8 9 7 9  
R I =  40.1 
RO=90. 
ANG= P 1 / o .  
D E L =  ( R ti- 
R ( N M A X ) =  1.0 
R ( l J =  R I / R C  
DELR-  ( K ( h C P X ) - R ( l J J / F L O A  
11(2J= R ( l J +  D E L R / 2  
NM1= N P 6 X - 1  

P I J / ( HG+ C C S  1 A hG 

DO 1 1 ~ 3 9  L C 1  
1 R ( I ) =  H ( I - l J +  CELR 

D O  2 I=l, L F A X  
G A N ( I J =  C t i S ( A h C J / R ( I J  
c ) M T ( I J =  S I h ( A h G J / R ( I )  
O M X I ( I J =  0. 

2 DEOCX(  I )=C. 
C I F  R U N T Y P E  = 2 O R  3 T h E N  S € T  

*FLOAT(NMAX-Z  1 )  

(NHAX-2 J 

E E  AND kHO T U  F I N D  T I H E  INCREWENTI EPS. H E R E  
C t E  I S  T H E  P C C U L L S  C F  E L A S T I C I T Y  A k D  RHO I S  T H E  O E Y S I T Y ( L R S / I N * * 3 )  

GACC= 306.C68527 
t€= 1 o 5 c o c c c .  
RHOA= C.1 
RHO= R I + C A * 2 . 7 5 / 2 7 .  
SS=  EE/Ht -C 
ELiHHO= S S + G b C C  
t P S =  S C U T  ( E C R t - C / C k A R * * 2  )*T I M  
R E T U K N  
€ N D  

F U N C T I O N  h b T ( I ( v 0 E L )  
HHT=1. 
RETURN 
€ N D  

* 
4 
4 * 
t 
4 
* * * 
8 
t 
4 
t 
4 
t 
t * 
4: 
* * * 
0 * * 
0 
t 
4 
4 
* 

F U N C T I G h  T E C P ( K v O E L )  
TEMP=O. 
RETURN 
€ l u O  
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APPENDIX D - Continued 

F UYC 1 I Ch C T  € P  F I K ,  C E  L 1 
u T t  MP= C . 
K t r U H N  
ii kJ  

F U N C T I U N  C ~ L I I K ~ O E L I  
O E L T = O .  
K E T U K N  
t iul) 

F U  uLT IuN C k t T  I K,C:EL I 
UHHT=O. 
H F T U K N  
c h D  

k U Y C T I t i k  C t - K b l K , C € L I  
UHRA=O. 
g t T U R N  
t h U  

t U m 4 C T I C k  C C t L T I K v C t L )  
d G E L T = C .  
K E T L 9 N  
t luo 
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APPENDIX D - Continued 

. F U N C T I O h  P ( K )  
COMMON / B L 3 / N L ' v  L A M I  N T  E A L S I G T  CHART OEL 
COMMUN / B L 9 /  C ( 4 . 4 ) ~  Z D U i ( 4 ~ 1 0 2 ) ~  Z D D O T ( 4 T 1 0 2 ) r  EPS 
C O M M O N / B L l C /  J T I M E  

C / B L l Z / I N I T Z  
~ / B L ~ ~ / A O T T I C T C P S  

K / B L l B / R b N T Y P E  T J U P P ( 5 )  
COMMON / B L 1 6 / T A L '  

I N T E G E R  H L h T Y F E  
K E A L  N 
R E A L  L A C  
U A T A  P 1 / 3 . 1 4 1 5 5 2 6 5 3 5 8 9 7 9 /  
C P S = l O .  
T I M = . 0 5 / t P S  
TAU= F L C A T ( J T I C E ) * T I N  
P S I B A R  = S.*P1/180.  
F E E = P I  /6. 
P S I =  PSIEAR*Slh(CPS*TAU*Z.*PII 
Q = 1  . / L A P  
S A = S I N I P S I )  
CA=COS ( P S  I )  
SF= S I N ( F E E 1  
CF=COS ( F E E  1 
PO= -Q* ( S A * S A * S F * S F +  2 .*CA*CA*CF+CF 
P 1 = -4. *Q *C A *  S A*SF*CF 
P 2 =  -0* S b * S A * S  F*S  F 
I F  ( N  . E C .  C . )  P=PO 
I F  ( N  . € C .  1.) P = P 1  
I F  (lri . E C .  2.) F = P 2  
R € T U K N  
END 

F U N C T I O l r i  P T ( K T C E L )  
P T - 0 .  
RETURN 
k NU 

F U A C T I C N  P X ( K , C E L )  
PX=O. 
R E T U K N  
END 

F U N C T I C h  Z l h I T ( K K v  I )  
C K K =  1 I S  F C R  Z I h " I T =  U X I ( I v 0 )  
C KK= 2 I S  F C R  Z I N I T z  U T H E T A ( l r 0 )  
C KK= 3 IS FOR Z I N I T =  r l ( I r 0 )  

2 I N  I T =  0 .  
RETUKN 
END 

* * * * * * * * * * 
* 
* * * * * * * * * * 
4 * 
* * * * 
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APPENDIX D - Concluded 

F U N C T I O h  Z C I N I T l K K t  I )  
C K K =  1 I S  F C R  Z C I N I T =  U X I  OOTlItO) 
C KK= 2 I S  F O R  Z D I N I T =  IJ THETA D O T ( I v 0 )  
C KK= 3 I S  F C R  Z C I N I T =  W 0 0 T ( I t 0 )  

Z O I h I T =  0. 
d E T U R N  
E NO 

PKUGAAM SUCUF ( I N P L T ,  OUTPUT,  T A P E 1 4 1  

I h T E G E H  F R E C  
I N T E G E R  R L h T Y P E  

O I M E N S I L h  P h S l 1 1 ,  39. 21) 

11 F O l i M A T  1 / 1 > * 5 1 P *  2 X * N  X1*8X+N TH€TA*SX*N X I T H E T A * 3 X * S k E A R * 7 X  
1 + M  X I + e X * C  T k E T A * 5 X 9 M  X I T H E T A 8 3 X * U  X I  +6X* U T H E T A * 6 X * W * l l X * P H l * l  

12 
14 FUKMAT l * l * ! X * l k E  T I M E S T E P  I S * I b r 5 X * T I M t = * E l 5 . 7 )  

k G Y C A T  ( 1 X  t 12 t 11E12  - 3  1 

U A T A  P 1 / 3 . 1 4 1 5 S 2 6 5 3 5 8 9 7 9 /  
hEcl IND 14 
C A L L  K E C I h ( 1 4 .  1 ,  I C ,  FHEQ, N M A X t  N T I M E ,  N F O U R t  A K t  T I M ,  R U N T Y P E )  
L L = I  
IF(eU&TYPE.FG. 2 )  L L = Z  
T I - f  T = A P * P I  
P R I h T  5 ,  FkcEC, h P h X ,  N T I P ' L I  hFCURi  T t l t T  
F CKMAT ( 5 x 4  F R  t C=* I h ,  l : ? X + K f . ( A X = + I h  ,10X*NT l P t = * I 6 ,  lOX*NFOUK=*I6 

K K  =11 

tuFIJLK=I\FCCP+ 1 
UU 2 0  J = l r h l  
UC 2 0  I = l r  PK 
U G  20  P = l , F T l P E  

UIJ 3 M=l,hFCCIH 

A h S = A h * I b t T  

D L  5 I = l r K k  

C A L L  i ( t C I h ( l 4 .  I ,  IC, A t K )  

3 

1 / ? 1 X * T H F i A = * t 1 4 . 7 l  

N l = ( h M A X - Z ) / F R F $ + 2  

L O  A h S ( 1  t J I K ) = C .  

A h = P - l  

00 3 K = L L , h T I t ' E  

U O  3 J = l r F l  

I F  ( ( 1 . f ~ .  3 )  .CK.( l .EQ.7)  .OK. (I.t~~.9).U1;.(1.EQ.ll))GO TO 2 
A N S  ( I t J t K 1 = D h S (  I , J 
tic TU 3 
A N S (  1 1  J t K  ) = A h S ( I t  J ,K )+AL 'C*S IN(ANG)  

5 C L N T I N U E  
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